Lyapunov theory in analysis of nonlinear partial differential equations Seminar talk

Mario Bukal

Faculty of Electrical Engineering and Computing Department of Control and Computer Engineering Unska 3, 10 000 Zagreb

July 18, 2012

- Introduction
 - Lypunov stability theory
 - Examples of PDEs
 - PDEs as dynamical systems
- Lyapunov theory for nonlinear evolution equations
 - State of the art
 - Outline of my thesis
- Discussion on a role of PDE theory in ACROSS project

Introduction Lyapunov stability theory

Given dynamical system

$$\dot{x} = f(x), \quad x(0) = x_0,$$

 $x \in \mathbb{R}^d$, $f : \mathbb{R}^d \to \mathbb{R}^d$ – smooth vector function.

Given dynamical system

 $\dot{x} = f(x), \quad x(0) = x_0,$

 $x \in \mathbb{R}^d, \, f: \mathbb{R}^d \to \mathbb{R}^d$ – smooth vector function.

Theorem (Lyapunov stability)

Let $x_E = 0$ be an equilibrium of the system and $\mathcal{U} \subset \mathbb{R}^d$. Let $V : \mathcal{U} \to \mathbb{R}$ be positive definite and $\dot{V}(x(t))$ negative semidefinite, then x_E is stable. Moreover, if $\dot{V}(x(t))$ is negative definite, i.e.

$$\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) + cW(x(t)) \le 0 \quad \text{for all } t > 0$$

and for some positive definite function $W : U \to \mathbb{R}$ and constant c > 0, then x_E is asymptotically stable.

Given dynamical system

 $\dot{x} = f(x), \quad x(0) = x_0,$

 $x \in \mathbb{R}^d$, $f: \mathbb{R}^d \rightarrow \mathbb{R}^d$ – smooth vector function.

Theorem (Lyapunov stability)

Let $x_E = 0$ be an equilibrium of the system and $\mathcal{U} \subset \mathbb{R}^d$. Let $V : \mathcal{U} \to \mathbb{R}$ be positive definite and $\dot{V}(x(t))$ negative semidefinite, then x_E is stable. Moreover, if $\dot{V}(x(t))$ is negative definite, i.e.

$$\frac{\mathrm{d}}{\mathrm{d}t}V(x(t)) + cW(x(t)) \le 0 \quad \text{for all } t > 0$$

and for some positive definite function $W : U \to \mathbb{R}$ and constant c > 0, then x_E is asymptotically stable.

Theorem (Exponential convergence)

Assume in addition $V(x) \leq c'W(x)$ and V is quadratic $(V(x) = x^T \mathbf{V}x)$, then

 $V(x(t)) \leq V(x_0) e^{-ct/c'}, \ t > 0 \quad \text{and} \ x(t) \ \text{converges exponentially to} \ x_E.$

Introduction

Examples of partial differential equations

• Heat equation

$$\frac{\partial u}{\partial t} = \kappa \Big(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \Big) = \kappa \Delta u$$

u(t;x,y,z) – temperature, $\kappa>0$

Introduction

Examples of partial differential equations

• Heat equation

$$\frac{\partial u}{\partial t} = \kappa \Big(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \Big) = \kappa \Delta u$$
$$u(t; x, y, z) - \text{temperature, } \kappa > 0$$

• Wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

u(t;x) – displacement, c > 0

Introduction

Examples of partial differential equations

• Heat equation

$$\frac{\partial u}{\partial t} = \kappa \Big(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \Big) = \kappa \Delta u$$
$$u(t; x, y, z) - \text{temperature, } \kappa > 0$$

• Wave equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

u(t;x) – displacement, c > 0

• Maxwell equations

$$\nabla \cdot \mathbf{E} = \rho/\varepsilon_0, \quad \nabla \cdot \mathbf{B} = 0,$$
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t},$$
$$\nabla \times \mathbf{B} = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} + \mu_0 \mathbf{J}.$$

Introduction PDEs as dynamical systems

Example. Heat equation as a dynamical system.

$$\frac{\partial u(t,x)}{\partial t} = \Delta u(t,x), \qquad u: (0,\infty) \times \Omega \to \mathbb{R}$$

Example. Heat equation as a dynamical system.

$$\frac{\partial u(t,x)}{\partial t} = \Delta u(t,x), \qquad u: (0,\infty)\times\Omega\to\mathbb{R}$$

Define $\tilde{u}(t)(x):=u(t,x)$ ($\tilde{u}(t)$ - state of the system at time t), then

$$\dot{\tilde{u}}(t) = A\tilde{u}(t),$$

 $\tilde{u}: (0, \infty) \to \{$ space of functions on $\Omega \}$, and $A = \Delta$ – operator on the $\{$ space of functions on $\Omega \}$.

Example. Heat equation as a dynamical system.

$$\frac{\partial u(t,x)}{\partial t} = \Delta u(t,x), \qquad u: (0,\infty) \times \Omega \to \mathbb{R}$$

Define $\tilde{u}(t)(x) := u(t,x)$ ($\tilde{u}(t)$ - state of the system at time t), then

$$\dot{\tilde{u}}(t) = A\tilde{u}(t),$$

 $\tilde{u}: (0,\infty) \to \{$ space of functions on $\Omega \}$, and $A = \Delta$ – operator on the $\{$ space of functions on $\Omega \}$.

Other evolution equations (nonlinear):

$$\begin{split} &\frac{\partial u}{\partial t}=\Delta(u^m), \quad \text{porus medium equation},\\ &\frac{\partial u}{\partial t}=\operatorname{div}(|\nabla u|^{p-2}\nabla u), \quad \text{parabolic p-Laplace equation},\\ &\frac{\partial u}{\partial t}=\operatorname{div}(u^\beta\nabla\Delta u), \quad \text{thin-film equation}. \end{split}$$

4

Lyapunov theory for nonlinear evolution equations $\ensuremath{\mathsf{State}}$ of the art

For a given evolution equation, a nonnegative functional ${\cal E}$ is called an entropy (Lyapunov functional) if it holds

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \leq 0 \quad \text{along each solution trajectory} \quad t \mapsto u(t), \quad \text{(EPI)}$$

for some nonnegative functional Q and constant $c\geq 0.$ Typical choice of entropies:

• α -functionals ($\alpha \in \mathbb{R}$):

$$E_{\alpha}[u] = \frac{1}{\alpha(\alpha-1)} \int_{\Omega} (u^{\alpha} - \alpha u + \alpha - 1) \mathrm{d}x, \quad E_1[u] = \int_{\Omega} (u \log u - u + 1) \mathrm{d}x.$$

Lyapunov theory for nonlinear evolution equations $\ensuremath{\mathsf{State}}$ of the art

For a given evolution equation, a nonnegative functional E is called an entropy (Lyapunov functional) if it holds

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \le 0 \quad \text{along each solution trajectory} \quad t \mapsto u(t), \quad \text{(EPI)}$$

for some nonnegative functional Q and constant $c \ge 0$. Typical choice of entropies:

• α -functionals ($\alpha \in \mathbb{R}$):

$$E_{\alpha}[u] = \frac{1}{\alpha(\alpha-1)} \int_{\Omega} (u^{\alpha} - \alpha u + \alpha - 1) \mathrm{d}x, \quad E_1[u] = \int_{\Omega} (u \log u - u + 1) \mathrm{d}x.$$

Example. Heat equation $\partial_t u = \Delta u$ on $\mathbb{T}^d \times (0, \infty)$.

$$\frac{\mathrm{d}}{\mathrm{d}t} E_2[u] + \int_{\mathbb{T}^d} |\nabla u|^2 \mathrm{d}x = 0 \quad \rightsquigarrow \quad E_2[u(t)] + \int_0^t \int_{\mathbb{T}^d} |\nabla u|^2 \mathrm{d}x \,\mathrm{d}s = E_2[u_0], \ t > 0.$$

Lyapunov theory for nonlinear evolution equations State of the art

For a given evolution equation, a nonnegative functional E is called an entropy (Lyapunov functional) if it holds

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \leq 0 \quad \text{along each solution trajectory} \quad t \mapsto u(t), \quad \text{(EPI)}$$

for some nonnegative functional Q and constant $c\geq 0.$ Typical choice of entropies:

• α -functionals ($\alpha \in \mathbb{R}$):

$$E_{\alpha}[u] = \frac{1}{\alpha(\alpha-1)} \int_{\Omega} (u^{\alpha} - \alpha u + \alpha - 1) \mathrm{d}x, \quad E_1[u] = \int_{\Omega} (u \log u - u + 1) \mathrm{d}x.$$

Example. Heat equation $\partial_t u = \Delta u$ on $\mathbb{T}^d \times (0, \infty)$.

$$\frac{\mathrm{d}}{\mathrm{d}t}E_2[u] + \int_{\mathbb{T}^d} |\nabla u|^2 \mathrm{d}x = 0 \quad \rightsquigarrow \quad E_2[u(t)] + \int_0^t \int_{\mathbb{T}^d} |\nabla u|^2 \mathrm{d}x \,\mathrm{d}s = E_2[u_0], \ t > 0.$$

Applications of entropy production inequalities:

• existence of solutions, long-time behaviour, positivity, numerical schemes, ...

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Motivation

• ongoing miniaturisation trend in nanotechnology

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Motivation

· ongoing miniaturisation trend in nanotechnology

Quantum Drift-Diffusion models

1. Density gradient model

$$\partial_t u = T\Delta u + \operatorname{div}\left(u\nabla(V_B[u] + V)\right),$$
$$-\lambda^2 \Delta V = u - C_{dot}, \quad V_B[u] = -\frac{\hbar^2}{2} \frac{\Delta\sqrt{u}}{\sqrt{u}}.$$

[u - particle density, T - temperature, V - electrostatic potential, V_B - Bohm potential, C_d - doping profile, λ - Debye length, \hbar - scaled Planck constant; Ref: Ancona et al. '89., Pinnau '00.]

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Motivation

ongoing miniaturisation trend in nanotechnology

Quantum Drift-Diffusion models

1. Density gradient model

$$\partial_t u = T\Delta u + \operatorname{div}\left(u\nabla(V_B[u] + V)\right),$$
$$-\lambda^2 \Delta V = u - C_{dot}, \quad V_B[u] = -\frac{\hbar^2}{2} \frac{\Delta\sqrt{u}}{\sqrt{u}}.$$

[u - particle density, T - temperature, V - electrostatic potential, V_B - Bohm potential, C_d - doping profile, λ - Debye length, \hbar - scaled Planck constant; Ref: Ancona et al. '89., Pinnau '00.]

2. Nonlocal quantum drift-diffusion model

$$\partial_t u = \operatorname{div}(u\nabla(A+V))\,,$$

$$u(t;x) = \frac{1}{(2\pi\hbar)^d} \int_{\mathbb{R}^d} \operatorname{Exp}\left(A(t;x) - \frac{|p|^2}{2}\right) \mathrm{d}p, \quad x \in \mathbb{R}^d, \ t > 0.$$

[A - quantum chemical potential, ${\rm Exp}(a)=W(\exp(W^{-1}(a)))$ - quantum exponential; Ref. Degond et al. '05.]

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Model equations

Approximation of A in terms of the scaled Planck constant \hbar (pseudo-differential calculus)

$$A = \log u - \frac{\hbar^2}{6} \frac{\Delta\sqrt{u}}{\sqrt{u}} + \frac{\hbar^4}{360} \sum_{i,j=1}^d \left(\frac{1}{2} (\partial_{ij}^2 \log u)^2 + \frac{1}{u} \partial_{ij}^2 (u\partial_{ij}^2 \log u)\right) + O(\hbar^6).$$

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Model equations

Approximation of A in terms of the scaled Planck constant \hbar (pseudo-differential calculus)

$$A = \log u - \frac{\hbar^2}{6} \frac{\Delta \sqrt{u}}{\sqrt{u}} + \frac{\hbar^4}{360} \sum_{i,j=1}^d \left(\frac{1}{2} (\partial_{ij}^2 \log u)^2 + \frac{1}{u} \partial_{ij}^2 (u \partial_{ij}^2 \log u) \right) + O(\hbar^6).$$

Model equations:

1. $O(\hbar^4)$: fourth-order quantum diffusion equation (also known as Derrida-Lebowitz-Speer-Spohn (DLSS) equation)

$$\partial_t u + \operatorname{div}\left(u\nabla\left(\frac{\Delta\sqrt{u}}{\sqrt{u}}\right)\right) = 0.$$
 (DLSS)

[Toom model: $\partial_t u + \frac{1}{2}(u(\log u)_{xx})_{xx} = 0$, Bleher et al. '94., Jüngel and Matthes '08., Savaré et al. '09.]

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Model equations

Approximation of A in terms of the scaled Planck constant \hbar (pseudo-differential calculus)

$$A = \log u - \frac{\hbar^2}{6} \frac{\Delta \sqrt{u}}{\sqrt{u}} + \frac{\hbar^4}{360} \sum_{i,j=1}^d \left(\frac{1}{2} (\partial_{ij}^2 \log u)^2 + \frac{1}{u} \partial_{ij}^2 (u \partial_{ij}^2 \log u) \right) + O(\hbar^6).$$

Model equations:

1. $O(\hbar^4)$: fourth-order quantum diffusion equation (also known as Derrida-Lebowitz-Speer-Spohn (DLSS) equation)

$$\partial_t u + \operatorname{div}\left(u\nabla\left(\frac{\Delta\sqrt{u}}{\sqrt{u}}\right)\right) = 0.$$
 (DLSS)

[Toom model: $\partial_t u + \frac{1}{2}(u(\log u)_{xx})_{xx} = 0$, Bleher et al. '94., Jüngel and Matthes '08., Savaré et al. '09.]

2. $O(\hbar^6)$: sixth-order quantum diffusion equation

$$\partial_t u = \operatorname{div}\left(u\nabla\left[\sum_{i,j=1}^d \left(\frac{1}{2}(\partial_{ij}^2\log u)^2 + \frac{1}{u}\partial_{ij}^2(u\partial_{ij}^2\log u)\right)\right]\right).$$
(QD6)

[1D version, Jüngel and Milišić '09.]

7

Lyapunov theory for nonlinear evolution equations Short overview of my thesis – Results

Key tool - entropy production inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \le 0, \qquad t > 0,$$

for some nonnegative functional Q and constant $c \ge 0$.

Lyapunov theory for nonlinear evolution equations

Short overview of my thesis - Results

Key tool - entropy production inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \le 0, \qquad t > 0,$$

for some nonnegative functional Q and constant $c \ge 0$.

- 1. How to find entropies (Lyapunov functionals) for a given equation? For which $\alpha \in \mathbb{R}$ are E_{α} entropies?
 - $\circ\;$ algorithmic construction of entropies based on systematic treatment of integration by parts formulae

Lyapunov theory for nonlinear evolution equations

Short overview of my thesis - Results

Key tool - entropy production inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \le 0, \qquad t > 0,$$

for some nonnegative functional Q and constant $c \ge 0$.

- 1. How to find entropies (Lyapunov functionals) for a given equation? For which $\alpha \in \mathbb{R}$ are E_{α} entropies?
 - $\circ\;$ algorithmic construction of entropies based on systematic treatment of integration by parts formulae
- 2. Analysis of the sixth-order quantum diffusion equation based on

$$\frac{\mathrm{d}}{\mathrm{d}t}E_1[u(t)] + c \int_{\mathbb{T}^d} \left(\left\| \nabla^3 \sqrt{u} \right\|^2 + \left| \nabla \sqrt[6]{u} \right|^6 \right) \mathrm{d}x \le 0, \quad t > 0.$$

[Matthes '10.]

 $\circ\;$ global in time existence of solutions, exponential convergence to the homogeneous steady state

Lyapunov theory for nonlinear evolution equations

Short overview of my thesis - Results

Key tool - entropy production inequalities

$$\frac{\mathrm{d}}{\mathrm{d}t}E[u(t)] + cQ[u(t)] \le 0, \qquad t > 0,$$

for some nonnegative functional Q and constant $c \ge 0$.

- 1. How to find entropies (Lyapunov functionals) for a given equation? For which $\alpha \in \mathbb{R}$ are E_{α} entropies?
 - $\circ\;$ algorithmic construction of entropies based on systematic treatment of integration by parts formulae
- 2. Analysis of the sixth-order quantum diffusion equation based on

$$\frac{\mathrm{d}}{\mathrm{d}t}E_1[u(t)] + c \int_{\mathbb{T}^d} \left(\left\| \nabla^3 \sqrt{u} \right\|^2 + \left| \nabla \sqrt[6]{u} \right|^6 \right) \mathrm{d}x \le 0, \quad t > 0.$$

[Matthes '10.]

- $\circ\;$ global in time existence of solutions, exponential convergence to the homogeneous steady state
- 3. Structure preserving numerical scheme for the fourth-order quantum diffusion equation.

 $M \rightarrow$

Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Zeno of Elea (5. ct. BC.): no solution!

Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Zeno of Elea (5. ct. BC.): no solution! Transport equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0, \quad \rho(0) = \rho_0, \ \rho(T) = \rho_T$$

Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Zeno of Elea (5. ct. BC.): no solution! Transport equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0, \quad \rho(0) = \rho_0, \ \rho(T) = \rho_T$$

Kinetic energy

$$E(\rho, v) = \int_0^T \int_{\mathbb{R}^d} \rho(t, x) |v(t, x)|^2 \mathrm{d}x \,\mathrm{d}t.$$

Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Zeno of Elea (5. ct. BC.): no solution! Transport equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0, \quad \rho(0) = \rho_0, \ \rho(T) = \rho_T$$

Kinetic energy

$$E(\rho, v) = \int_0^T \int_{\mathbb{R}^d} \rho(t, x) |v(t, x)|^2 \mathrm{d}x \,\mathrm{d}t.$$

Wasserstein distance

$$W(\rho_0, \rho_T)^2 = \inf_{(\rho, v)} E(\rho, v) = \inf_M \int_{\mathbb{R}^d} |x - M(x)|^2 \rho_0(x) \mathrm{d}x.$$

Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Zeno of Elea (5. ct. BC.): no solution! Transport equation

$$\partial_t \rho + \operatorname{div}(\rho v) = 0, \quad \rho(0) = \rho_0, \ \rho(T) = \rho_T$$

Kinetic energy

$$E(\rho, v) = \int_0^T \int_{\mathbb{R}^d} \rho(t, x) |v(t, x)|^2 \mathrm{d}x \,\mathrm{d}t.$$

Wasserstein distance

$$W(\rho_0, \rho_T)^2 = \inf_{(\rho, v)} E(\rho, v) = \inf_M \int_{\mathbb{R}^d} |x - M(x)|^2 \rho_0(x) \mathrm{d}x.$$

Wide range of applications: analysis of PDEs, statistics, image restoration, multisensor multitarget tracking

9

Discussion on a role of PDEs in ACROSS project Swarming models

Modelling of the collective behavior of interacting agents: birds (starlings, geese) fish, insects, certain mammals (wildebeasts, sheep), free-flying spacecrafts, ...

Discussion on a role of PDEs in ACROSS project Swarming models

Modelling of the collective behavior of interacting agents: birds (starlings, geese) fish, insects, certain mammals (wildebeasts, sheep), free-flying spacecrafts, ...

1. Particle models - based on the combination of self-propelling, friction and attraction-repulsion phenomena:

$$\dot{x}_i = v_i,$$

$$\dot{v}_i = (\alpha - \beta |v_i|^2) v_i - \frac{1}{N} \sum_{j \neq i} \nabla U(|x_i - x_j|),$$

for i=1,...,N, $\alpha,\beta\geq 0;$ $U:\mathbb{R}^d\rightarrow \mathbb{R}$ – Morse potential given by

$$U(|x|) = -C_A e^{-|x|/l_A} + C_R e^{-|x|/l_R}.$$

2. Kinetic models - Boltzmann equation for the particle density f(t, x, v) (density of agents)

$$\partial_t f + v \cdot \nabla_x f = Q(f, f),$$

 ${\cal Q}(f,f)$ – interaction operator given by

$$Q(f,f)(x,v) = \varepsilon \int_{\mathbb{R}^{2d}} \left(\frac{1}{J}f(x,v_*)f(y,w_*) - f(x,v)f(y,w)\right) \mathrm{d}w \,\mathrm{d}y.$$

2. Kinetic models - Boltzmann equation for the particle density f(t, x, v) (density of agents)

$$\partial_t f + v \cdot \nabla_x f = Q(f, f),$$

 ${\cal Q}(f,f)$ – interaction operator given by

$$Q(f,f)(x,v) = \varepsilon \int_{\mathbb{R}^{2d}} \left(\frac{1}{J} f(x,v_*) f(y,w_*) - f(x,v) f(y,w) \right) \mathrm{d}w \, \mathrm{d}y.$$

3. Hydrodynamic models - from the kinetic model with additional assumptions:

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho u) &= 0, \\ \rho \partial_t u_i + \operatorname{div}(\rho u u_i) &= \rho(\alpha - \beta |u|^2) u_i - \rho(\partial_{x_i} U * \rho), \end{split}$$
 where $\rho(t, x) &= \int_{\mathbb{R}^d} f(t, x, v) \operatorname{d} v$ and $\rho u = \int_{\mathbb{R}^d} f(t, x, v) v \operatorname{d} v. \end{split}$

Thank you for your attention!

Hvala na pažnji!