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Theorem (Lyapunov stability)
Let zg = 0 be an equilibrium of the system and U C R Let V :U — R be
positive definite and V (z(t)) negative semidefinite, then x g is stable. Moreover, if
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Let zg = 0 be an equilibrium of the system and U C R Let V :U — R be
positive definite and V (z(t)) negative semidefinite, then x g is stable. Moreover, if
V(z(t)) is negative definite, i.e.

d

EV(ac(t)) +cW(x(t)) <0 forallt>0

and for some positive definite function W : Ud — R and constant ¢ > 0, then zg is
asymptotically stable.

Theorem (Exponential convergence)

Assume in addition V (z) < ¢ W (x) and V is quadratic (V(x) = 7 Vx), then

V(z(t) < V(zo)e <, t >0 and z(t) converges exponentially to z .
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e Heat equation
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u(t; z,y, z) — temperature, k > 0

e Wave equation
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u(t; z) — displacement, ¢ > 0

e Maxwell equations
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PDEs as dynamical systems

Example. Heat equation as a dynamical system.

Ou(t, x)
ot

Define @(t)(z) := u(t,x) (a(t) - state of the system at time t), then

= Au(t, z), w:(0,00) x 2 =R

w(t) = Aa(t),

@ : (0,00) — {space of functions on 2}, and A = A — operator on the {space of
functions on Q}.
Other evolution equations (nonlinear):

% = A(u™), porus medium equation,
8u . p—2 . .
Fri div(|Vu|P"°Vu), parabolic p-Laplace equation,

% = div(uﬂVAu), thin-film equation.
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State of the art

For a given evolution equation, a nonnegative functional E is called an entropy
(Lyapunov functional) if it holds

d

dt
for some nonnegative functional @ and constant ¢ > 0.
Typical choice of entropies:
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t
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Applications of entropy production inequalities:

e existence of solutions, long-time behaviour, positivity, numerical schemes, ...
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e ongoing miniaturisation trend in nanotechnology
Quantum Drift-Diffusion models
1. Density gradient model
Ou =TAu+div (uV(Va[u] +V)),

" AVau
2 o — _
A AV =Uu Cdot, VB [u] B \/a .

[ w - particle density, T' - temperature, V' - electrostatic potential, V5 - Bohm potential, C; - doping profile, X -

Debye length, i - scaled Planck constant; Ref: Ancona et al. '89., Pinnau '00. |
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Short overview of my thesis — Motivation

e ongoing miniaturisation trend in nanotechnology
Quantum Drift-Diffusion models
1. Density gradient model
Ou =TAu+div (uV(Va[u] +V)),
Ay
2 Ju

[ w - particle density, T' - temperature, V' - electrostatic potential, V5 - Bohm potential, C; - doping profile, X -

—NAV =u — Caor, Valu] =

Debye length, i - scaled Planck constant; Ref: Ancona et al. '89., Pinnau '00. |

2. Nonlocal quantum drift-diffusion model
Oru = div(uV(A+ V),

1 Ip|? a
u(t;z) = W/IR” Exp (A(t,z)f T)dp, z €RY, t>0.

[ A - quantum chemical potential, Exp(a) = W (exp(W ~!(a))) - quantum exponential;

Ref: Degond et al. '05. ]
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Short overview of my thesis — Model equations

Approximation of A in terms of the scaled Planck constant 7 (pseudo-differential calculus)
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Short overview of my thesis — Model equations

Approximation of A in terms of the scaled Planck constant 7 (pseudo-differential calculus)
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1,j=1
Model equations:
1. O(h"): fourth-order quantum diffusion equation (also known as
Derrida-Lebowitz-Speer-Spohn (DLSS) equation)

Byu + div (uv(%)) =0. (DLSS)

1
[Toom model: 8w + E(u(log U gz )oze = 0, Bleher et al. '94., Jiingel and Matthes '08., Savaré et al. '09.]
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Approximation of A in terms of the scaled Planck constant 7 (pseudo-differential calculus)

AL B 1 1,0, 6
A:logu—gﬁ —|—%” (E(afjlogu)Q—FEaij(uaijlogu))—|—O(l‘i).

4,j=1

Model equations:

1. O(h"): fourth-order quantum diffusion equation (also known as
Derrida-Lebowitz-Speer-Spohn (DLSS) equation)

Byu + div (uv(%)) =0. (DLSS)

1
[Toom model: 8w + E(u(log U gz )oze = 0, Bleher et al. '94., Jiingel and Matthes '08., Savaré et al. '09.]
2. O(h®): sixth-order quantum diffusion equation

d

dru = div (uv{ 3 (%(afj logu)® + %afj (ud? 1ogu))D . (QD6)

i,j=1

[1D version, Jiingel and Miligi¢ '09.]
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o global in time existence of solutions, exponential convergence to the homogeneous
steady state
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Short overview of my thesis — Results

Key tool — entropy production inequalities

d
dt
for some nonnegative functional @ and constant ¢ > 0.

1. How to find entropies (Lyapunov functionals) for a given equation? For which
a € R are E,, entropies?
o algorithmic construction of entropies based on systematic treatment of integration
by parts formulae

Elu(t)] + cQlu(t)] <0, t>0,

2. Analysis of the sixth-order quantum diffusion equation based on

< Bufu(o) + c/ (IV*Vall® + |V ) de < 0, ¢ >0,
Td

[ Matthes '10. ]
o global in time existence of solutions, exponential convergence to the homogeneous
steady state
3. Structure preserving numerical scheme for the fourth-order quantum diffusion
equation.
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Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

Zeno of Elea (5. ct. BC.): no solution!
Transport equation

Oep+div(pv) =0, p(0) = po, p(T) = pr
Kinetic energy

E(p,v) = /OT/Rd o(t,2)|o(t, )| *da dt.

Wasserstein distance
W (oo, pr)? = inf E(p.0) = inf [ o= M(@)po(a)da.
(pyv) M R4

Wide range of applications: analysis of PDEs, statistics, image restoration,
multisensor multitarget tracking
9
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Modelling of the collective behavior of interacting agents: birds (starlings, geese)
fish, insects, certain mammals (wildebeasts, sheep), free-flying spacecrafts, ...
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Swarming models

Modelling of the collective behavior of interacting agents: birds (starlings, geese)
fish, insects, certain mammals (wildebeasts, sheep), free-flying spacecrafts, ...

1. Particle models - based on the combination of self-propelling, friction and

attraction-repulsion phenomena:
Ti = Vs,

bi:(a—mvl\ -——ZVU |zs — z4]),

J#i
fori=1,...,N, a,8>0; U:R?— R - Morse potential given by

U(lz]) = _CAe*\zl/lA + CR(;\I\/ZR'




__________________________________________________________________
Discussion on a role of PDEs in ACROSS project

Swarming models

2. Kinetic models - Boltzmann equation for the particle density f(t,z,v) (density
of agents)

Of +v-Vaf =Q(f, 1),
Q(f, f) — interaction operator given by

Q. Haw) =z [ (G500 fw) = o) fow) dudy.
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Swarming models

Kinetic models - Boltzmann equation for the particle density f(¢,z,v) (density
of agents)

8tf+vvxf:Q(f,f)7
Q(f, f) — interaction operator given by

Q. Haw) =z [ (G500 fw) = o) fow) dudy.

Hydrodynamic models - from the kinetic model with additional assumptions:
Orp + div(pu) = 0,
pdru; + div(puu;) = p(a — Blu|*)u; — p(9z,U * p),

where p(t,z) = [La f(t,2,v)dv and pu = [, f(t,z,v)vdv.




Thank you for your attention!

Hvala na paZnjil



