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Introduction
Lyapunov stability theory

Given dynamical system

ẋ = f(x) , x(0) = x0,

x ∈ Rd, f : Rd → Rd – smooth vector function.

Theorem (Lyapunov stability)

Let xE = 0 be an equilibrium of the system and U ⊂ Rd. Let V : U → R be
positive definite and V̇ (x(t)) negative semidefinite, then xE is stable. Moreover, if
V̇ (x(t)) is negative definite, i.e.

d

dt
V (x(t)) + cW (x(t)) ≤ 0 for all t > 0

and for some positive definite function W : U → R and constant c > 0, then xE is
asymptotically stable.

Theorem (Exponential convergence)

Assume in addition V (x) ≤ c′W (x) and V is quadratic (V (x) = xTVx), then

V (x(t)) ≤ V (x0)e−ct/c
′
, t > 0 and x(t) converges exponentially to xE .
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ẋ = f(x) , x(0) = x0,

x ∈ Rd, f : Rd → Rd – smooth vector function.

Theorem (Lyapunov stability)

Let xE = 0 be an equilibrium of the system and U ⊂ Rd. Let V : U → R be
positive definite and V̇ (x(t)) negative semidefinite, then xE is stable. Moreover, if
V̇ (x(t)) is negative definite, i.e.

d

dt
V (x(t)) + cW (x(t)) ≤ 0 for all t > 0

and for some positive definite function W : U → R and constant c > 0, then xE is
asymptotically stable.

Theorem (Exponential convergence)

Assume in addition V (x) ≤ c′W (x) and V is quadratic (V (x) = xTVx), then

V (x(t)) ≤ V (x0)e−ct/c
′
, t > 0 and x(t) converges exponentially to xE .

2



Introduction
Lyapunov stability theory

Given dynamical system
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Introduction
Examples of partial differential equations

• Heat equation

∂u

∂t
= κ

(∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= κ∆u

u(t;x, y, z) – temperature, κ > 0

• Wave equation

∂2u

∂t2
= c2

∂2u

∂x2

u(t;x) – displacement, c > 0

• Maxwell equations

∇ ·E = ρ/ε0, ∇ ·B = 0,

∇×E = −∂B
∂t
,

∇×B = µ0ε0
∂E

∂t
+ µ0J.
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Introduction
PDEs as dynamical systems

Example. Heat equation as a dynamical system.

∂u(t, x)

∂t
= ∆u(t, x), u : (0,∞)× Ω→ R

Define ũ(t)(x) := u(t, x) (ũ(t) - state of the system at time t), then

˙̃u(t) = Aũ(t),

ũ : (0,∞)→ {space of functions on Ω}, and A = ∆ – operator on the {space of
functions on Ω}.
Other evolution equations (nonlinear):

∂u

∂t
= ∆(um), porus medium equation,

∂u

∂t
= div(|∇u|p−2∇u), parabolic p-Laplace equation,

∂u

∂t
= div(uβ∇∆u), thin-film equation.
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Lyapunov theory for nonlinear evolution equations
State of the art

For a given evolution equation, a nonnegative functional E is called an entropy
(Lyapunov functional) if it holds

d

dt
E[u(t)] + cQ[u(t)] ≤ 0 along each solution trajectory t 7→ u(t), (EPI)

for some nonnegative functional Q and constant c ≥ 0.
Typical choice of entropies:

• α-functionals (α ∈ R):

Eα[u] =
1

α(α− 1)

∫
Ω

(uα − αu+ α− 1)dx, E1[u] =

∫
Ω

(u log u− u+ 1)dx .

Example. Heat equation ∂tu = ∆u on Td × (0,∞).

d

dt
E2[u] +

∫
Td

|∇u|2dx = 0  E2[u(t)] +

∫ t

0

∫
Td

|∇u|2dx ds = E2[u0], t > 0.

Applications of entropy production inequalities:

• existence of solutions, long-time behaviour, positivity, numerical schemes, . . .
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Lyapunov theory for nonlinear evolution equations
Short overview of my thesis – Motivation

• ongoing miniaturisation trend in nanotechnology

Quantum Drift-Diffusion models

1. Density gradient model

∂tu = T∆u+ div
(
u∇(VB [u] + V )

)
,

−λ2∆V = u− Cdot, VB [u] = −~2

2

∆
√
u√
u
.

[ u - particle density, T - temperature, V - electrostatic potential, VB - Bohm potential, Cd - doping profile, λ -

Debye length, ~ - scaled Planck constant; Ref: Ancona et al. ’89., Pinnau ’00. ]

2. Nonlocal quantum drift-diffusion model

∂tu = div(u∇(A+ V )) ,

u(t; x) =
1

(2π~)d

∫
Rd

Exp
(
A(t; x)−

|p|2

2

)
dp, x ∈ Rd

, t > 0.

[ A - quantum chemical potential, Exp(a) = W (exp(W−1(a))) - quantum exponential;

Ref: Degond et al. ’05. ]
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Lyapunov theory for nonlinear evolution equations
Short overview of my thesis – Model equations

Approximation of A in terms of the scaled Planck constant ~ (pseudo-differential calculus)

A = log u− ~2

6

∆
√
u√
u

+
~4

360

d∑
i,j=1

(1

2
(∂2
ij log u)2 +

1

u
∂2
ij(u∂

2
ij log u)

)
+O(~6).

Model equations:

1. O(~4): fourth-order quantum diffusion equation (also known as
Derrida-Lebowitz-Speer-Spohn (DLSS) equation)

∂tu+ div

(
u∇
(∆
√
u√
u

))
= 0 . (DLSS)

[Toom model: ∂tu +
1

2
(u(log u)xx)xx = 0, Bleher et al. ’94., Jüngel and Matthes ’08., Savaré et al. ’09.]

2. O(~6): sixth-order quantum diffusion equation

∂tu = div

(
u∇
[ d∑
i,j=1

(1

2
(∂2
ij log u)2 +

1

u
∂2
ij(u∂

2
ij log u)

)])
. (QD6)

[1D version, Jüngel and Milǐsić ’09.]
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Lyapunov theory for nonlinear evolution equations
Short overview of my thesis – Results

Key tool – entropy production inequalities

d

dt
E[u(t)] + cQ[u(t)] ≤ 0, t > 0,

for some nonnegative functional Q and constant c ≥ 0.

1. How to find entropies (Lyapunov functionals) for a given equation? For which
α ∈ R are Eα entropies?
◦ algorithmic construction of entropies based on systematic treatment of integration

by parts formulae

2. Analysis of the sixth-order quantum diffusion equation based on

d

dt
E1[u(t)] + c

∫
Td

(
‖∇3√u‖2 + |∇ 6

√
u|6
)

dx ≤ 0, t > 0.

[ Matthes ’10. ]

◦ global in time existence of solutions, exponential convergence to the homogeneous
steady state

3. Structure preserving numerical scheme for the fourth-order quantum diffusion
equation.
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Discussion on a role of PDEs in ACROSS project
Optimal transport problems and Wasserstein distance

Monge - Kantorovich problem

M−−−−→

Zeno of Elea (5. ct. BC.): no solution!
Transport equation

∂tρ+ div(ρv) = 0, ρ(0) = ρ0, ρ(T ) = ρT

Kinetic energy

E(ρ, v) =

∫ T

0

∫
Rd

ρ(t, x)|v(t, x)|2dx dt.

Wasserstein distance

W (ρ0, ρT )2 = inf
(ρ,v)

E(ρ, v) = inf
M

∫
Rd

|x−M(x)|2ρ0(x)dx.

Wide range of applications: analysis of PDEs, statistics, image restoration,
multisensor multitarget tracking
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Discussion on a role of PDEs in ACROSS project
Swarming models

Modelling of the collective behavior of interacting agents: birds (starlings, geese)
fish, insects, certain mammals (wildebeasts, sheep), free-flying spacecrafts, ...

1. Particle models - based on the combination of self-propelling, friction and
attraction-repulsion phenomena:

ẋi = vi,

v̇i = (α− β|vi|2)vi −
1

N

∑
j 6=i

∇U(|xi − xj |),

for i = 1, ..., N , α, β ≥ 0; U : Rd → R – Morse potential given by

U(|x|) = −CAe−|x|/lA + CRe
−|x|/lR .

10



Discussion on a role of PDEs in ACROSS project
Swarming models

Modelling of the collective behavior of interacting agents: birds (starlings, geese)
fish, insects, certain mammals (wildebeasts, sheep), free-flying spacecrafts, ...

1. Particle models - based on the combination of self-propelling, friction and
attraction-repulsion phenomena:

ẋi = vi,

v̇i = (α− β|vi|2)vi −
1

N

∑
j 6=i

∇U(|xi − xj |),

for i = 1, ..., N , α, β ≥ 0; U : Rd → R – Morse potential given by

U(|x|) = −CAe−|x|/lA + CRe
−|x|/lR .
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Discussion on a role of PDEs in ACROSS project
Swarming models

2. Kinetic models - Boltzmann equation for the particle density f(t, x, v) (density
of agents)

∂tf + v · ∇xf = Q(f, f),

Q(f, f) – interaction operator given by

Q(f, f)(x, v) = ε

∫
R2d

( 1

J
f(x, v∗)f(y, w∗)− f(x, v)f(y, w)

)
dw dy.

3. Hydrodynamic models - from the kinetic model with additional assumptions:

∂tρ+ div(ρu) = 0,

ρ∂tui + div(ρuui) = ρ(α− β|u|2)ui − ρ(∂xiU ∗ ρ),

where ρ(t, x) =
∫
Rd f(t, x, v) dv and ρu =

∫
Rd f(t, x, v)v dv.
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Thank you for your attention!

Hvala na pažnji!


