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Abstract

It is hard to imagine living in a building without electricity and a heating
or cooling system these days. Factories and data centers are equally de-
pendent on a continuous functioning of these systems. As beneficial as this
development is for our daily life, the consequences of a failure are critical.
Malfunctioning power supplies or temperature regulation systems can cause
the close-down of an entire factory or data center. Heat and air conditioning
losses in buildings lead to a large waste of the limited energy resources and
pollute the environment unnecessarily. To detect these flaws as quickly as
possible and to prevent the negative consequences constant monitoring of
power lines and heat sources is necessary. To this end, we propose a fully
automatic system that creates 3D thermal models of indoor environments.
The proposed system consists of a mobile platform that is equipped with
a 3D laser scanner, an RGB camera and a thermal camera. A novel 3D
exploration algorithm ensures efficient data collection that covers the entire
scene. The data from all sensors collected at different positions is joined
into one common reference frame using calibration and scan matching. In
the post-processing step a model is built and points of interest are auto-
matically detected. A viewer is presented that aids experts in analyzing the
heat flow and localizing and identifying heat leaks. Results are shown that
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demonstrate the functionality of the system.

Keywords: 3D thermal mapping, autonomous mobile robots, calibration,
next-best-view-planning, visualization

1. Introduction

Imagine a technology that automatically creates a full 3D thermal model
of an environment and detect temperature peaks in it (cf. Figure 1). Such a
system would be a big step in monitoring and inspection of existing buildings
and technical assets as well as in achieving energy efficiency in building con-
struction. For example, data centers and factories rely on correct functioning
of their infrastructure. Damaged pipes and cables or other parts endanger
their functionality, cause pauses in the work flow and may lead to harmful
fires. In many cases leaks and overheating could be detected in their early
stages by use of thermography thus preventing further damage. Building
construction has undergone major changes in recent years. The importance
of energy efficiency has attracted notice. To meet the Passivhaus, the Zero-
energy building, or even the Energy-plus building standard modern building
design makes use of all available heat sources including electrical equipment
or even the body heat from people and animals inside the building. While
this leads to changes in the way buildings are designed it also poses the ques-
tion how existing buildings can be modified to meet these standards and to
eliminate heat and air conditioning losses. According to the Action Plan
for Energy Efficiency [14] of the European Commission the largest and cost-
effective energy savings potential lies in residential (≈ 27%) and commercial
(≈ 30%) buildings. The system proposed in this article is meant to aid in
reaching these savings.

The current state of the art for analyzing temperature related issues is
thermal imaging. Fouad and Richter present a guideline for thermography in
the building industry in Germany [21]. To detect thermal bridges of exterior
building walls outdoor thermography is commonly used. Thermal bridges
lead to a loss of energy and can cause humidity and mold growth. Only a
few images are necessary to capture the entire building but at the expenses
of the resolution. To detect flaws in the construction a difference of 15 Kelvin
is necessary between indoor and outdoor temperature to come to significant
conclusions. It is desired that the weather conditions remain stable over a
longer period of time, making the morning hours in the winter months ideal.
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Keeping stable conditions is easier to achieve for indoor thermography.
The analysis of back-ventilated walls and roofs is only possible from indoors.
Thermal bridges at exterior walls and interior walls connecting heated and
unheated rooms, pillars that interrupt the thermal insulation of a building,
air leaks at windows and doors and the moisture penetration at basement
walls are the common applications for indoor thermography, that focus on
energy efficiency in existing buildings. Other applications aim at document-
ing and examining the run of heating pipes, detecting blocked pipes and
construction units in a building to eliminate flaws, to make room for im-
provements and, in some cases, to ensure safety. For new buildings or the
energetic restoration of existing buildings it has also become common to
perform thermography before, during and after the construction phase for
quality management.

Monitoring and analysis of the data for a large building is tedious. For
indoor thermography the room should be prepared at least six hours before
the inspection to achieve best results. A constant temperature is desired for
this period. Furniture has to be moved away from the walls to allow their
inspection. The difference between indoor and outdoor temperature has to be
at least 10 ◦C. During the inspection each room is examined with the thermal
camera. For each picture the inspector has to note the exact position and
orientation from where the picture was taken [20]. After the inspection the
images have to be analyzed taking into account the room temperature, the
humidity, the material of the wall and the angle from which objects are seen.
For some applications, e.g., inspection during construction or renovation, it
is also necessary that the changes are documented over time, thus asking for
comparability between independently acquired datasets [21].

Thermal images document the precise temperatures without any spatial
dimensions. To identify a heat source and measure its extent it is necessary
that the expert analyzes the scene on-site which is time-consuming and in
cases even dangerous. For applications that require repeated thermography
over time, comparison of the 2D data is only possible to some extent. Success-
fully modifying a building with respect to thermal issues involves extensive
planning. This planning would greatly be improved by the existence of a
geometrically correct thermal model. We propose a robotic system that cre-
ates a full 3D model of the environment with color and thermal information
(cf. Figure 1) enabling an expert to fully analyze the recorded scene offline
on a computer. Furthermore, regions of interest, e.g., regions with temper-
ature peaks or drastic changes in temperature, are automatically detected
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Figure 1: Laser scan with reflectance (left), thermal (middle) and color
(right) information.

and pointed out to the user, increasing the efficiency of the analysis. The
spatial accuracy of the model enables one to measure the extent of the area
in question and its immediate localization in the building.

Our system creates a 3D thermal model of the area autonomously. The
full 3D model makes it easy to identify the location of each picture as it is
shown within its surroundings and its position is known. This is especially
important since indoor photos capture only a small part of the scene. Au-
tomatic registration, as known from robotics, enables the merging of two
models acquired at different times. According to Fouad and Richter [21]
thermography can only be an auxiliary device. The analysis of the scene is
only possible through expertise and experience. By automatically pointing
out regions of interest in the data our system helps to find damages quickly
during the analysis.

This article presents our approach to fully autonomous 3D thermal mod-
eling of buildings. We combine thermal imaging with the technology of ter-
restrial laser scanning. The system has to fulfill three main tasks. First, the
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data needs to be acquired and registered, i.e., all data from different sensors
and positions needs to be put into one common reference frame. Second,
the positions where sensor data is collected need to be planned and driven
to autonomously. Third, the data has to be analyzed and presented to a
user. Experiments evaluate the performance of the system and results show
exemplarily a complete 3D model of an office environment collected by the
system. We extend our initial work [9] by several components. The system
was completed with a photo camera that allows better identification of ob-
jects in the resulting model. Errors in the calibration procedure were reduced
with a novel method and the automatic detection of interesting temperature
distributions was implemented in the post-processing step. The main con-
tribution is the extension of the exploration strategy to consider the full 3D
structure of the environment. Instead of exploring solely based on the floor
plan of the building, the system tries to find positions from where the entire
3D space can be seen, reducing the amount of occlusions in the captured
data.

2. Background and State of the Art

To access the energy efficiency of houses thermal cameras are commonly
used. These cameras measure temperatures precisely, but return only 2D im-
ages of the environment and therefore the loss of energy can only be roughly
quantified. Images are projections to 2D. From a sequence of images it is
in principle possible to perform a 3D reconstruction. These approaches are
called bundle adjustment or structure from motion (SFM). Bundle adjust-
ment uses image features to calculate 3D positons of them. SFM adds auto-
matic data association and therefore solves the simultaneous localization and
mapping (SLAM) problem, i.e., the problem of recovering the 3D structure
of the environment and the sensor poses (position and orientation). Since re-
liable solutions to image based 3D reconstruction from thermal images alone
have not been presented yet, a second sensor has to be used to create the 3D
model. Instead of using a co-calibrated system of a thermal camera and an
RGB camera we use the emerging technology of terrestrial laser scanning.

2.1. Autonomous data acquisition and mapping
Laser scanning methods are well established in the surveying community

and in robotics. Terrestrial 3D laser scanning systems yield precise 3D point
clouds. Scanning from different poses enables one to digitize a complete
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indoor environment and to resolve occlusions. Registration algorithms from
the geodesy and robotics community are available to automatically align scan
views from different poses.

Related work in inspection robotics includes human detection with ther-
mal cameras using temperature signatures [31]. Högner and Stilla present
a modified van as surveying vehicle for acquiring thermal images in urban
environments [24]. However, the focus is on outdoor environments and image-
based techniques like SFM. Prakash et al. present stereo imaging using ther-
mal cameras, but focus on small scale applications [44]. Iwaszczuk et al.
suggest an approach to map terrestrial and airborne infrared images onto
existing building models [25]. The model is textured by extracting polygonal
parts from the image and mapping those onto the model using standardized
masked correlation. Only little work has been done to combine 3D scanners
and thermal cameras. Carbelles et al. present a methodology to exhaus-
tively record data related to a World Heritage Monument using terrestrial
laser scanning, close range photogrammetry and thermal imagery [11]. They
use four different sensors for data acquisition: a reflectorless total station, a
terrestrial laser range scanning sensor, a digital photo camera and a thermal
camera. With a total of eight natural control points a total station they re-
late the geometry between different sensors. Pelagottia et al. present a first
automatic approach for multispectral texture mapping [43]. Their method
is based on the extraction of a depth map in the form of an image from the
model geometry, whose pixels establish exact correspondences with the ver-
tices of the 3D model. The registration with the chosen texture is performed
based on the maximization of mutual information.

3D environment mapping using 3D scanners on mobile robots are sub-
ject to research [51, 36]. Building thermal 3D models of environments has
received some attention recently. Ham and Golparvar-Fard model and eval-
uate thermal models and the energy performance of buildings [23]. For this
purpose they co-calibrate a thermal camera with an RGB camera. The color
images are used to create a 3D model using SFM. SFM approaches are prone
to failure in regions with few features or repeating structures, the density of
the resulting model is low and the scale is unknown. Vidas et al. [56, 48]
focus on co-calibrating a thermal camera and a Microsoft Kinect. They de-
veloped a hand-held system that creates a 3D model of the environment
based on registering the Kinect data. This approach yields a dense model
but is limited to the accuracy of the Kinect camera and requires a human
operator. Laser scanning has the advantage that the resulting dense model
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has a high geometric accuracy and is not as sensitive to repeating structures
and feature-less areas as SFM approaches are. Gonzáles-Aguilera et al. [15]
combine the technology of laser scanners and thermal cameras to create mod-
els of building exteriors. They extract features from both the thermal images
and the projections of the point cloud from the laser scanner and match these
to register the data. In indoor environments this approach is prone to errors
as only small parts will be visible due to the small opening angles of thermal
cameras. In combination with the low resolution of typical thermal cameras
images tend to have too few features for a reliable registration. To the best
of our knowledge, a fully autonomous system for modeling using 3D scanning
and thermal imaging has not been done yet.

2.2. Sensor placement planning
Sensor placement planning is needed for the goal directed acquisition of

3D data. The task of a sensor placement planning algorithm is to find a set
of sensor configurations needed for obtaining a detailed environment model.
Since a typical 3D laser scan takes 3 to 5 minutes for one position, depending
on the resolution, it is desirable to minimize the number of scanning positions.
This leads to an optimization problem similar to the Art Gallery Problem
(AGP) (where to place guards such that the entire gallery is guarded). The
AGP problem is NP hard and is usually solved by heuristics that perform
well in practice [22]. These methods are categorized as model-based sensor
placement planning (a priori model of the environment is known) and non-
model-based methods. The latter are applied for exploration tasks in which
the robotic system has to navigate autonomously in an unknown environment
and build its own model. The planner must determine the next-best-view
(NBV) based on the information collected from previous scans. Most ex-
ploration strategies push the robot onto the border between explored and
unexplored regions [18, 54]. The majority of exploration algorithms is not
reliable when applied under real conditions due to the sensitivity to uncer-
tainty of measurements, localization, and map building. A small divergence
in localization at the pre-computed NBV point can lead to many unneces-
sary movements. Moorehead et al. include the uncertainty of the robot pose
into the exploration strategies [34]. Recently, numerous sensor placement
planning algorithms have been developed for the reconstruction of 3D envi-
ronment models. Most methods take 3D scans based on a 2D exploration
strategy [51]. For creating a full 3D thermal model of a building it is essen-
tial to consider the 3D geometry of the environment to ensure that all parts
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of the building are mapped. Blaer and Allen propose a 3D NBV method
which plans additional viewing locations based on a voxel-based occupancy
procedure for detecting holes in the model [7]. Low and Lastra present a full
non-model-based 3D NBV method based on an exhaustive hierarchical 3D
view metric evaluation [29]. However, the computational complexity is still
the major challenge in designing practical 3D NBV solutions.

2.3. Surface reconstruction and model building

The process of generating a surface from a set of 3D points is called surface
reconstruction. The last challenging task in building a 3D thermal model of
an indoor environment is the reconstruction of the 3D mesh with the temper-
ature scalar field mapped onto it. Methods to reconstruct the 3D surface from
a point cloud can be divided into two distinct groups, namely face-based re-
construction (triangulation) and iso-surface reconstruction (meshing). The
most common triangulation methods use are the Voronoi [3] and 3D De-
launay [4] algorithms. Su and Drysdale present several implementations of
the latter algorithm analyzing the performance [50]. These algorithms re-
quire closed and organized geometry, i.e., that the model has to be fully
connected and without major outliers in the point cloud. The algorithms
tend to close the structure of the model, which is good for the digitization
of cultural heritage sites as presented in [13] and [2] but not sufficient for
environment reconstruction in terms of time and memory efficiency as well
as overall output quality. Iso-surface reconstruction, unlike the triangula-
tion which reconstructs part-by-part, generates iso-surfaces, meaning that
the model is generated by connecting the points with constant values, i.e.,
distance, pressure, temperature, etc.. The most popular algorithm for iso-
surface reconstruction is the Marching Cubes Algorithm (MCA) developed
in [28]. This algorithm starts with dividing the input space into cubes. After
selecting a random cube and its eight neighbors, the algorithm determines
the polygonal part of the iso-surface passing through the cube.

There are also modifications to the standard MCA presented in [12] and
[35] that deal with “ripples” caused by topological inconsistencies of the model
(or point cloud acquisition). Since the space is divided equally, it is suitable
for the purpose of 3D thermal model reconstruction of indoor environments,
as it allows for thermal inspection of the space segments. In order to create
iso-surfaces realistically, it is important to calculate precise iso-values. This
is typically done by ball pivoting [5], Poisson surface reconstruction [27] and
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Figure 2: The robot Irma3D (left). The laser scanner with the thermal
camera and the webcam mounted on top (right).

butterfly subdivision of surfaces [33]. These methods require very high res-
olution point clouds resulting in large data sets (millions of points) and are
generally very slow.

3. Advanced Mutual Calibration between the 3D Sensor and the
Thermal Camera

3.1. Experimental Setup and Data Acquisition

The setup for simultaneous acquisition of 3D laser scan data and thermal
images is the robot Irma3D (see Figure 2). Irma3D is built of a Volksbot
RT-3 chassis. Its main sensor is a Riegl VZ-400 laser scanner from terrestrial
laser scanning. A thermal camera is mounted on top of the scanner. The
optris PI160 thermal camera has an image resolution of 160 × 120 pixels
and a thermal resolution of 0.1 ◦C in a spectral range of 7.5 to 13µm. It
acquires images at a frame rate of 120Hz and with an accuracy of 2 ◦C with
a field of view of approximately 40◦ × 64◦. For acquisition of color data a
Logitech QuickCam Pro 9000 webcam is used featuring a video resolution
of 1600 × 1200 pixels. The laser scanner acquires data with a field of view
of 360◦ × 100◦. To achieve the full horizontal field of view the scanner head
rotates around the vertical scanner axis when acquiring the data. We take
advantage of this feature when acquiring image data. Since the cameras are
mounted on top of the scanner, they are also rotated. We acquire 10 images
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per camera during one scanning process to cover the full 360◦. To avoid
blurring and the problems that come from the necessity of synchronization
we refrain from taking the images while scanning. Instead we perform a full
360◦rotation for scanning and rotate back with stops at the image positions.
A further advantage of this strategy is that the cameras can be connected
with regular USB cables because the cable is unwound after each rotation.
For obstacle avoidance a SICK LMS100 2D laser scanner is installed at the
front of the robot.

3.2. Data Processing Procedure

After acquiring the 3D data it has to be merged with the image infor-
mation. This processing consists of five steps that will be explained in this
section.

3.2.1. Intrinsic Calibration of Thermal and Optical Camera
Each sensor perceives the world in its own local coordinate system. To

join the perceived information we need the specific parameters of these coor-
dinate systems. Each camera has unique parameters that define how a point
(X, Y, Z) in world coordinates is projected onto the image plane. These
parameters are calculated through a process known as geometric camera cal-
ibration. Given the focal length (fx, fy) of the camera and the camera center
(cx, cy) image coordinates (x, y) are calculated as: x

y
1

 =

 fx 0 cx
0 fy cy
0 0 1

 X/Z
Y/Z

1

 . (1)

Given the radial distortion coefficients k1, k2, k3 and the tangential distortion
coefficients p1, p2 and r =

√
x2 + y2 the corrected image points (xc, yc) are

calculated as

(
xc
yc

)
=

(
x(1 + k1r

2 + k2r
4 + k3r

6) + 2p1y + p2(r
2 + 2x2)

y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2x

)
(2)

To determine the parameters of optical cameras chessboard patterns are
commonly used because the corners are reliably detectable in the images. A
number of images showing a chessboard pattern with known number and size
of squares are recorded. In each image the internal corners of the pattern are
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detected. The known distances between the corner points in world coordi-
nates allow to formulate equations (1) and (2) as a non-linear least squares
problem and to solve for the calibration parameters [10].

For low resolution thermal cameras a chessboard pattern is error-prone
even after heating it with an infrared lamp. For pixels that cover the edge
of the squares the temperature is averaged over the black and white parts
thus blurring the edges. Luhmann et al. [30] have explored the calibration
procedure using different types of thermal cameras. Generally an object
with a unique pattern of distinct targets is used which eases labeling and
increases accuracy of the calibration process. The points are actively or
passively heated. In case of passive heating different materials cause the
pattern to show up. Luhmann et al. developed a pattern consisting of targets
of self-adhesive foil on an aluminum plate. While the targets emit radiation
based to their own temperature the reflective metal surface reflects the cold
temperature of space thus leading to a strong contrast. Unfortunately this
concept is not applicable for the co-calibration of the thermal camera and a
laser scanner as it is very difficult to position the board in a way that the
sky is reflected without occlusions and the board is completely visible in the
laser scan. Instead we suggest a pattern with clearly defined heat sources
such as small light bulbs as it shows up nicely in thermal images.

Figure 2 shows our pattern in the background. It is composed of 30 tiny
12 Volt lamps, each with a glass-bulb diameter of 4mm. The overall size of
the board is 500mm (width) × 570mm (height). Identifying the heat sources
in the image enables us to perform intrinsic calibration in the same way as
for optical cameras. The approach is similar to the approach used by Ham
and Golparvar-Fard [23]. The main difference comes from the ability of the
optris PI160 thermal camera to output the raw temperature information for
each pixel rather than providing a color coded image only. While the color
settings have to be carefully tuned to allow even for manual detection of the
light bulbs, the raw temperature information can easily be used to detect
the calibration pattern automatically in the data. A thresholding procedure
is applied to create a binary image showing regions of high temperature. A
further thresholding step discards effectively all regions that are too big or
too small. If the remaining number of regions is equal to the number of light
bulbs in the pattern the regions are sorted according to the pattern to allow
for easy determination of correspondences. To calculate the exact center of
the features, the mean is calculated by weighing all the pixels in the region
by their temperature values.
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3.2.2. Extrinsic Calibration – Cameras and Laser Scanner
After calculating the internal parameters of the cameras we need to align

the camera images with the scanner coordinate system, i.e., extrinsic cali-
bration. The three rotation and three translation parameters are known as
the extrinsic camera parameters and define the geometric relation between
camera and laser scanner. Once all the points are in the camera coordinate
system the projection to the image can be defined up to a factor s using
equation (3) [10]:

s

 x
y
1

 =

 fx 0 cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



X
Y
Z
1

 (3)

Suppose there are n images of the calibration pattern andm planar points
on the pattern considering the distortions as independent and identically dis-
tributed noise, then the maximum likelihood estimate of the transformation
between the scanner and camera coordinate system is obtained by minimizing
the reprojection error

n∑
i=1

m∑
j=1

||pij − p̂(A,D,Ri, ti,Pj)||2 (4)

where Ri is the rotation matrix and ti the translation vector of the ith
image. A is the intrinsic matrix and D contains the distortion parameters
as calculated in the intrinsic camera calibration. p̂(A,D,Ri, ti,Pj) defines
the projection of point Pj in image i according to equation (3) and (2), and
pij describes the pixel coordinates of the point in the image. This approach
assumes that we have a number of points that are identifiable in both the
laser scan and the image. For this purpose we attach the calibration pattern
onto a board. For the optical camera this is a printed chessboard pattern
and for the thermal camera light bulbs are arranged in a regular grid pattern.
The calibration patterns are depicted in the background of Figure 2. The
positions of the points in these patterns are known. Algorithm 1 detects the
points in a laser scan.

To facilitate the detection of the calibration board in the point cloud
data and to enable the easy positioning at different locations, the board
is mounted on a tripod. This way the board hangs almost freely in the air.
After removing the floor, the ceiling and most objects behind the board with a
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Algorithm 1 Calibration pattern detection in a laser scan.
Require: point cloud, specification of calibration pattern
1: discard points outside the area of the expected board
2: find the most prominent plane using RANSAC (RANdom SAmple Con-

sensus) [19]
3: project a generated plane model into the center of the detected plane
4: use ICP (Iterative Closest Point) algorithm [6] to fit the plane model to

the data points
5: if each point from the plane model has a corresponding point in the point

cloud then
6: return position of the light bulbs according to ICP result
7: end if

simple thresholding technique, the board becomes the most prominent plane
in the data and can be detected using the RANSAC algorithm [19]. A plane
model is generated by subsampling points on a plane with the dimensions
of the calibration board. This model is transformed towards the center of
the detected plane facing the same direction as the plane. To fit the model
perfectly to the data the ICP algorithm [6] is used, thus giving the exact
pose (position and orientation) of the calibration board. Since the positions
of the light bulbs or chessboard corners on the board are known, their exact
positions in 3D space can be calculated from the pose of the board.

3.2.3. 3D to 2D Projection and Color Mapping
During the data acquisition phase laser scans and images are acquired

simultaneously. After determining the relations between scanner and cameras
in the calibration step this relation is used directly to assign temperature and
color values to the point cloud.

3.2.4. Projection/Occlusion/Resolution Errors
Due to the different fields of view, the sensors see different parts of the

world. An area that is visible for one sensor might be occluded for the other
sensor. When mapping the thermal information to the point cloud this causes
wrong correspondences and therefore faulty assigned values. This impact is
fortified by the low resolution of the thermal camera. With only 120 by 160
pixels per image each pixel corresponds to many 3D points seen by the laser
scanner leading to errors at edges. Consequently small calibration inaccu-
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racies have a large impact on the results. To solve this problem initially
a fast procedure was implemented. All points that were projected onto one
pixel and its neighboring pixels were clustered depending on their distance to
the scanner. Assuming that most points fall onto the correct pixel a heuris-
tic based on distance to the 3D scanner and size of the cluster determines
which points are considered and enhanced with thermal information [8]. The
method works sufficiently for the low resolution of the thermal camera but
fails for higher resolution cameras. Therefore we now perform a ray tracing
procedure that checks whether a point in the point cloud can be seen by the
camera. We connect the point P and the camera position C with a straight
line PC and select all points with a distance less than a threshold t to PC,
i.e., all points Oi for which

|P−Oi|2 −
|(P−Oi) · (P−C)|2

|P−C|2
< t2 (5)

holds true. If any point Oi lies between P and C, P is not visible from
the camera and is therefore discarded. The threshold t accounts for small
inaccuracies in the calibration and the low resolution of the camera simul-
taneously. To speed up the checking procedure the points are organized in
a kD-tree data structure. With a quick check those voxels are immediately
discarded that are not traversed by the ray and therefore all the points within
are ignored.

3.2.5. Scan Registration
Laser scans acquired at different positions are registered into one common

coordinate system using 6D SLAM from 3DTK – The 3D Toolkit [38]. It
calculates a high presicision estimate of the scanner pose with 6 degrees of
freedom. The scan registration algorithm implemented in 3DTK is described
in detail in [37].

4. Sensor Placement Planning

The sensor placement planning module enables the full autonomous ex-
ploration in order to acquire a dense model of the environment. An algorithm
based on the 2D horizontal plane in the point cloud at a specific height can
be used efficiently for many tasks. However, this is not sufficient for creating
a complete 3D model. Consider an empty room without obstacles. In a 2D
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Figure 3: Block scheme of the sensor placement planning algorithm

scenario a robot with a horizontal field of view of 360◦ will finish after one
scanning position because it perceives all the walls of the room from any
position within the room. Constraints in the vertical field of view of the
scanner, that cause missing data at the floor and the ceiling or parts of the
walls outside of the considered height level, will simply be ignored. This is
even more eminent in complex shaped rooms or when obstacles, like chairs,
tables, wardrobes, etc. are present in the room and occlude other objects at
varying height. Consequently, if the aim is to have a complete 3D model, a
method that searches for unexplored areas in 3D is needed.

Implementing and applying a complete 3D sensor placement planning al-
gorithm in a large indoor environment needs significant memory space for
storing the occupancy information of the whole environment. One would
also need to store the exploration status of each part of the environment. All
together this stretches the memory demands a lot. Additionally, the compu-
tational effort needed to process all the stored information will be high and
increases the exploration time. The approach proposed in this paper com-
bines 2D and 3D planning to enable tracking of the three dimensional infor-
mation of the environment with lower computation and memory demands.
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The block scheme of the overall sensor placement planning algorithm is de-
picted in Figure 3. The main idea relies on a typical indoor environment
structure, composed of enclosed spaces like rooms, halls, corridors and so
on. Starting with exploration based on only 2D measurements and following
the next best view (NBV) positions obtained from 2D planning, the robot
detects an enclosed space, i.e. a room, and models it. At that moment the
procedure of searching for the NBV position switches from 2D to 3D NBV
planning, which takes into account the whole 3D environment information
captured by the 3D laser scanner. The NBV planning algorithm based on 3D
information explores only the detected room as a small unit of the large envi-
ronment, thus needing to store only all the 3D information of this small part.
Therefore, a combination of 2D and 3D information based exploration keeps
the computational and memory requirements low, because only a small part
of 3D model is used while exploring. When the detected room is explored,
the 3D NBV planning algorithm terminates and exploration continues again
with the 2D NBV planning until a new unexplored enclosed space is detected
and the algorithm switches back to 3D NBV planning. The algorithm ter-
minates when the 2D NBV algorithm detects that the whole environment is
explored, i.e. when there is not any so-called jump edge left in the memory.
A jump edge is an edge that separates explored and unexplored regions of
the environment. The next sections describes the three main modules of the
algorithm: 2D NBV planning, room detection and 3D NBV planning.

4.1. 2D NBV Planning Algorithm
The 2D NBV planning algorithm is based on our previous approach pre-

sented in [1]. The algorithm does not require any information about the
environment beforehand. Initiated with a blank map it starts to explore the
environment based on the first scan.

The inputs are range values uniformly distributed on the 360◦ field of
view. The ranges are extracted from the 3D point cloud so that all range
data lies in the plane parallel to the floor plane. To ensure that the robot
does not hit any obstacles, a slice covering the entire height of the robot is
used to create the map, i.e., all values that are between approximately 30 and
70 cm above the ground are used to create a 2D floor plan. The relatively
large distance to the floor was chosen to account for small inaccuracies in the
leveling of the robot.

Assuming that the environment model is initially unknown it is incremen-
tally built after each scan. The model is hierarchical with three abstraction
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levels. At the lowest level the grid map is used to store the static and dy-
namic obstacle information needed for path planning and obstacle avoidance.
The next abstraction level contains the polygonal representation of the envi-
ronment which stores environment edges, such as walls and other obstacles,
which have been extracted from the range data and jump edges – edges that
separate explored and unexplored regions of the environment. The most ab-
stract level contains scanning position candidates which are considered for
finding the NBV scanning position, i.e., the next goal position for the path
planning module. We assume a setup where the robot localization problem is
solved. The GMAPPING module under ROS [52] is used in our experiments.
While exploring, the robot has to navigate between scanning positions in an
unknown environment. We use a motion planning algorithm based on the D*
algorithm and the Dynamic Window obstacle avoidance algorithm described
in [47].

The 2D NBV planning algorithm is composed of three consecutive steps,
which are executed at each scanning position: (1) vectorization – extracting
lines from range data, (2) creation of the exploration polygon EP – building
the most recent model of the environment, and (3) selection of the NBV
sensor position – choosing the next goal for the path planning module. These
three steps are explained in the following.

4.1.1. Vectorization
The main goal of the vectorization step is to obtain line segments from

the input range data extracted from the 3D scan using the least squares
method. First, the Progressive Probabilistic Hough Transform (PPHT) from
the OpenCV library [26] is applied to the range data to calculate an initial
estimation of the line segments, which are then used to group all range data
around the calculated line segments according to their distance ∆ρk from the
lines. Second, more precise line parameters are calculated by a least squares
line fitting algorithm.

4.1.2. Creation of the Exploration Polygon
A polygonal representation of the environment is used for selecting the

NBV position, for creating the gridmap, and for path planning. The calcu-
lated line segments from the vectorization step form the measurement poly-
gon as follows. The ending points of adjacent detected lines are connected
with jump edges and define the polygon Pi at the ith scanning position pi.
The result is a polygon Pi that is composed of real line segments and artificial
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edges, i.e., jump edges, between them. However, some jump edges from the
new scan might fall into the already explored area from previous scans. To
discard those jump edges we use the union of the new polygon Pi (from the
last scan) and the old exploration polygon EPi−1 (from previous scans) as
a representation of the currently explored area and we discard jump edges
within the union of the polygons (from GPC library [55]). In each step i,
EPi is updated as EPi = EPi−1

⋃
Pi. The union of two polygons keeps only

those edges from both polygons that are most distant from the point of view
of the robot, and thus ensures that new jump edges are not created within
previously explored regions. Jump edges that are longer than the preset
value ∆r are considered for the selection of the next scanning position. The
minimal length of the jump edge ∆r is chosen in accordance with the robot
dimensions and ensures that small jump edges are discarded, i.e., those the
robot cannot pass through. If the non-empty extended polygon EP i contains
no reachable jump edge, it is considered as the reliable polygonal description
and the exploration process stops.

4.1.3. Selection of the Next Best View Scanning Position
We use a simple heuristic criterion for selecting the NBV position similar

to [18]. By taking a scan directly in front of the jump edge it is easy to imag-
ine that we will gain a larger amount of new information than by scanning
further away from the jump edge inside of the explored area. Therefore, one
candidate scanning position is assigned to each jump edge. It is an obstacle
free position near the mid point of the jump edge at distance d from the
jump edge. d is chosen to be equal to the dimensions of the robot to ensure
safety in case the jump edge is close to an obstacle that has not yet been
detected. Additionally, d must be larger than the minimal sensor range. The
next sensor position is chosen by maximization of a criterion that estimates
the amount of unexplored regions seen from each potential position.

Figure 4 shows two candidate positions p1 and p2 with jump edges denoted
by red lines. The current scanning position is at R. The measure of the size of
the unexplored region that is possibly seen from the k-th candidate position
is calculated from the angles in the triangles that are defined by the k-th
candidate position and all jump edges. To maximize the information gain
all jump edges have to be considered that are visible from the candidate
position. In Figure 4 both jump edges are visible from p1. Considering also
the length dj of the shortest path from the path planning module between
the current robot position R and the j-th candidate position the selection

18



R

1p
2p

11 21

Figure 4: Selection criterion based on angles of visibility.

criterion is as follows:

Ij = k1
1

dj
+ k2

N∑
i=1

αij. (6)

N is the number of candidate positions and αij is the angle in the triangle de-
fined by the j-th candidate position and the i-th jump edge. Two parameters
k1 and k2 are used as weighting parameters of angle and distance estimations,
respectively. Numerous experiments in simulation and with the real robot
showed good performance with k1 set to the maximal range distance and k2
set to 1/N which averages over all angles.

4.2. Room Detection
The crucial step of the proposed sensor placement planning algorithm is

the room detection algorithm, which is used to switch between the 2D and 3D
NBV planning algorithms. After each scan taken at the position chosen by
the 2D NBV planning algorithm, the room detection algorithm searches for
the enclosed space (room) based on the current information captured from
previous scans. If the room is detected, the 2D NBV algorithm is paused
and the 3D NBV algorithm starts.

In the 2D exploration phase a 2D cut of the environment is used that
represents the area that is traversable by the robot. For room detection such
a slice close to the ground is not suitable because objects occlude the room
boundaries and windows and doors interrupt them. The main idea for room
detection is grounded on the detection of a closed space in the 2D polygonal
line map of the environment obtained by vectorization of range data at the
most suitable height level above the floor. The most suitable height level for
room detection is an obstacle free 2D plane at the height where the room
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boarders and walls are easily detected, i.e., a plane close to the ceiling. We
choose it manually before the exploration starts. From the current 2D line
map (taken at a suitable height level) of the workspace the room detection
algorithm tries to detect a room. Let A be the the lines corresponding to
real environment edges obtained from the last scan. The algorithm searches
for a room starting from the first line within the set A and tries to close the
loop through other lines in the entire map. The process proceeds by finding
the line closest to the current line in each step. When the loop is closed, i.e.,
when the nearest line is the starting line again, the room is detected. The
nearest line search refers to the nearest ending point of a line in the vicinity
of the current line. The vicinity area around the current line is defined with
the radius parameter equal to the expected doorway width. With that, we
ignore holes caused by doorways and windows inside the room. If there is
no room detected starting from the first line in set A, the detection process
starts from the second line in A. The order of the lines in A is not relevant.
In case no closed polygon can be found with any line from set A as starting
line, the room could not be detected in that step and exploration continues
with the 2D NBV algorithm.

4.3. 3D NBV Planning Algorithm
The room detection algorithm provides the room parameters including

the boundary area and the coordinates of the room. When the room is
detected at least one scan inside the room is available since the robot has
already entered the detected room and taken at least one scan inside which
has been used for the room detection. From the available scans inside the
room the initial 3D model of the room is built and the exploration continues
by using the 3D model based NBV planning algorithm. The main idea of
the 3D NBV planning algorithm is described hereafter.

To obtain NBV positions the 3D model of the detected room needs to
hold information of the explored and unexplored area inside the room. We
use a voxel based 3D model where each voxel has one of the following labels:
occupied if the volume within the voxel is occupied, unseen if the occupied
status of the voxel is unknown or empty if the voxel is empty with no obstacles
inside. The dimensions of the room define the number of voxels that should
be used to cover the whole area of the room, i.e., memory allocation for the
detected room. The shape of the enclosed space can be arbitrary. A cuboid
3D voxel model that encloses the entire detected room is chosen. The voxel
model has to be large enough to enclose the largest room expected in the
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environment. Although there could be voxels in the cuboid model which are
not part of the room, they are not considered during NBV position planning.

Once the room is detected, its voxel based 3D map is initialized with all
voxels set to unseen, since we do not have any information on the environ-
ment. The stored scans that were taken inside the detected room are used
to update its initial voxel based 3D model. This is performed by using the
ray tracing algorithm which traces a ray from the position where the scan
was taken to each data point in the scan. Each voxel that is crossed by the
ray is marked as empty and the voxel containing the data point is marked as
occupied. The potential NBV position candidates are all voxels at the height
of the laser scanner with the status empty. Position candidates that are not
reachable for the robot are then removed from the list. The aim is to choose
the candidate scanning position from where the most unseen voxels could be
seen. For each candidate scanning position we count the number of unseen
voxels. A ray is traced from the candidate scanning position to each unseen
voxel and, if all crossed voxels are empty, the counter is incremented. Since
considering every unseen voxel is unnecessarily time consuming only unseen
voxels with at least one empty neighbor are taken into account [7]. In that
way the number of voxels that need to be tested is decreased and voxels out-
side the room boundaries are not considered. The approach is similar to the
jump edges in 2D in the way that unseen voxels that are taken into account
actually corresponds to jump planes which divide explored and unexplored
regions. Constraints in the field of view and range properties that are lim-
its introduced by the sensors are considered by checking the range and the
angle between the candidate scanning position and the unseen voxels. If the
constraints are not satisfied, the unseen voxel is not counted. After finding
a location that maximizes the number of unseen voxels, i.e., the NBV posi-
tion, the robot drives to it, takes the 3D scan, and the whole procedure is
repeated. The algorithm stops when the number of unseen voxels that can
be seen from the best candidate position is below some predefined threshold
Vmin and the room is considered explored.

5. Planning Results

Experiments were carried out in a research building (Figure 5) at Jacobs
University Bremen, Germany with the robot Irma3D (Figure 2). The aim was
to build a complete 3D model of the environment based on 3D scans with
thermal information attached. Each scan took 3 minutes and 15 seconds.
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(a) (b) (c)

(d) (e) (f)

Figure 5: Pictures of the environment taken by Irma3D during the experi-
ments. The map with the scanning positions is given in Figure 6. a) and b)
room 1 seen from scanning position 2; c) the corridor seen from position 6
facing towards position 4; d) looking into room 3 from position 6; the small
corridor connecting room 2 and 3 seen from position 11; e) room 2 seen from
position 10.

The laser scanner is constrained by a vertical field of view of 100◦ and the
thermal camera with a vertical opening angle of 60◦, respectively. Since the
laser scanner field of view exceeds that of the thermal camera, the constraints
of the algorithm are set to consider the field of view of the camera. The voxel
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Figure 6: Robot path and scanning positions during exploration

volume used in the experiment was set to 0.008m3 (0.2 m × 0.2 m × 0.2 m).
For creating the 2D map a slice of the 3D scan was taken at a height between
approximately 30 cm and 70 cm above the ground to make sure the robot hits
no obstacles at any height. The room detection height level was set to 2.5m
to avoid difficulties with windows and doors. Figure 6 to 8 present the results
of an experiment illustrating the behavior of the proposed sensor placement
planning algorithm.

Figure 6 shows the floor plan of the explored environment which con-
sists of three rooms and a corridor. The scanning positions chosen by the
proposed sensor placement scanning algorithm are ordered from the start
position (position 1) to the end position (position 13) and marked with the
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(a) Exploration polygon after scan 3
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(b) Exploration polygon after scan 6
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(c) Exploration polygon after scan 9
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(d) Exploration polygon after scan 13

Figure 7: Important exploration polygons during the experiment (jump edges
are in red color and 2D NBV scanning positions marked with cross characters
in red circles).

robot footprints. Green footprints refer to scanning positions generated by
the 2D algorithms and red footprints by the 3D NBV algorithm, respectively.
Some photos illustrating the environment are given in Figure 5. The pho-
tos are excerpts from the data that the robot Irma3D acquired during the
experiment. The robot started from position 1 in room 1 and took the ini-
tial scan. The first scan was sufficient for the room detection algorithm to
detect room 1. When the room was detected, the jump edges inside room
1 were discarded, leaving only the jump edges detected outside of room 1
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for continuing with the 2D NBV planning algorithm after exploring room 1.
The initial 3D voxel model of the room was built and the 3D NBV planning
algorithm was switched on. Then the 3D NBV planning algorithm chose
position 2, took the scan there and updated the 3D model of room 1. Since
the number of unseen voxels was larger than the threshold (Vmin = 15 voxels)
the 3D NBV algorithm continued with the exploration of room 1 and chose
scanning position 3. After the third scan, the 3D model of room 1 was of
the desired accuracy and the exploration was continued with the 2D NBV
algorithm, which moved the robot to position 4 in the corridor, i.e. in front of
one of the two available jump edges (see Figure 7a). The 2D NBV algorithm
chose two additional scanning positions in the corridor (positions 5 and 6).
The reason for the jump edge at position 5 is a range constraint of 8m on
the laser data in 2D causing part of the corridor not to be seen in the 2D
laser data from position 4. Further away from the robot the points are very
sparse making line extraction difficult. After the corridor, the robot moved
to position 7 at the entrance of room 3, i.e. to the edge with the lowest value
of the criterion (Figure 7b) without exploring the corridor with the 3D NBV
algorithm. The corridor was not considered as a room since it was closed
on both sides with glass doors as can be seen in Figure 5(c). At the room
detection height level of 2.5m the glass doors were not visible in the laser
scan.

Due to the lack of clutter in the corridor three scanning positions were
sufficient to satisfy the criteria of the 2D NBV algorithm. After scan 8 room
2 was detected and fully explored with only one additional position from the
3D NBV algorithm. Afterwards, 2D NBV planning chose position 10 based
on the polygon shown in Figure 7c and position 11 and 12 before room 3 was
detected. Finally, position 13 was chosen by the 3D NBV algorithm to achieve
the required accuracy of the room model. The exploration of the environment
finished here as there were no jump edges in the memory (Figure 7d), which
means that the whole environment was explored and modeled.

Figure 8 represents the 3D voxel models of room 1 after the first (8a) and
the third (8b) scan. The occupied voxels are colored red, potential position
voxels (PP) are colored blue, while unseen voxels are colored green. In the
figure we also have white voxels, which are unseen voxels that can be seen
from at least one PP position in the workspace. They are a subset of the
unseen voxels and are treated as such in the exploration algorithm. They
only serve to show that some of the unseen voxels could never be seen from
any position. The specific cone in the figure is a consequence of the sensor
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Table 1: The number of unseen (U), occupied (O) and the number of unseen
voxels that can be seen from the best next position in 3D (UB) at each scan
inside room 1

Voxel type Scan 1 Scan 2 Scan 3
O (red) 4091 6207 7034
U (green) 2104 1248 1207

UB 965 203 0

(a) Initial model of room 1 after the
first scan

(b) Final model of room 1 after the
third scan

Figure 8: 3D voxel based models of room 1. occupied voxels are colored red,
potential position voxels (PP) are colored blue, unseen voxels are colored
green. White voxels are unseen voxels that can be seen from at least one PP
position in the workspace.

field of view constraints. The other unseen (green) voxels are situated under
the tables, chairs and other obstacles inside the room representing unexplored
area. As can be seen in the model and in the Table 1, the number of unseen
voxels that can be seen from the best position is zero after the last scan inside
room 1.

To evaluate the benefits of the 3D exploration strategy, we conducted two
new experiments in room 1, one using only 2D exploration and one with both
2D and 3D exploration. We placed the robot at the same starting position in
both experiments. The results are seen in Figure 9 and 10. Figure 9 shows
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Figure 9: Comparison of 2D and 3D NBV algorithm

the final exploration polygon with the positions where the scans were taken.
Rectangular marks show positions chosen only by 2D NBV and circles refer
to 3D NBV based positions. In the 2D mode the robot finished after two
scanning positions. As can be seen in the panorama image, large parts of the
ceiling, the floor and the walls are not captured with the thermal camera.
The unexplored area is drastically reduced when 3D exploration is employed
as well. From Table 2 it becomes clear that 703 unseen (UB) voxels could
still be seen from the NBV position after the 2D exploration.
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Figure 10: Panorama images of room 1. Top: The entire room with re-
flectance values as captured by the laser scanner using 3D exploration. Mid-
dle: The part captured with thermal information using 2D exploration. Bot-
tom: The part captured with thermal information using 3D exploration.
Note that the thermal camera has a drastically reduced field of view as com-
pared to the laser scanner.
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Table 2: The number of unseen (U), occupied (O) and the number of unseen
voxels that can be seen from the best next position in 3D (UB) at each scan
inside room 1 after 2D and 3D exploration.

3D NBV 2D NBV
Voxel type Scan 1 Scan 2 Scan 3 Scan 1 Scan 2

O (red) 4068 5321 6106 4033 4958
U (green) 2275 1524 1192 2320 2036

UB 1025 361 0 1017 703

6. 3D Thermal Surface Model Building

The complete model of the environment can be inspected in the viewer
from 3DTK enhanced with either reflectance values or thermal data (see
Figure 1). The color scale is adjustable for a good view of the temperature
distribution in the current data. In all images depicted here, blue corresponds
to cold temperatures while dark red corresponds to warm temperature values.
Switching between the different views enables the user to detect sources of
wasted energy and to locate them clearly in the 3D view. The Riegl VZ-400
laser scanner has an accuracy of 5mm [32]. In previous work it was shown
that the scan matching algorithm used here leads to a positional error of less
than 4 cm when joining several 3D laser scans even in large outdoor environ-
ments [37]. However, humans are used to virtual models consisting of filled
structures without holes, i.e., surfaces or meshes. The process of generating
surfaces from a set of points is called surface reconstruction. We present a
method to reconstruct a 3D model with added thermal field information and
to retrieve information from the finished model. The automatic detection of
heat sources in the model to point out possible leaks is of special interest.

6.1. Applying the Marching Cubes Algorithm

The Marching Cubes Algorithm (MCA) calculates meshes based on iso-
surfaces from point clouds that are organized in voxels. It calculates triangles
that separate each voxel into the parts that lie within and outside of the ob-
ject that is to be reconstructed. To generate the iso-surfaces more quickly,
a probabilistic approximation method is used [46]. Every point in the input
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point cloud is assigned a Gaussian distribution. The final iso-surface is cal-
culated by applying an aggregation operator, i.e., minimum, maximum, or
sum. Changing the width of the Gaussian bell reduces the influence on the
neighboring points/voxels. This method improves the results if normals in
every point are provided.

6.2. Temperature Scalar Field Mapping
The Gaussian estimation of iso-values and the subsequent MCA recon-

struction do not deal with scalar temperature values acquired by the thermal
camera. These values have to be mapped onto the reconstructed surface using
an appropriate color scale.

The surface is reconstructed from the point cloud. The temperature val-
ues are assigned to the points. Mapping the temperature color distribution
onto the reconstructed surface is difficult because not every point on the sur-
face corresponds directly to one point in the original point cloud and there-
fore cannot be assigned a temperature/color value directly. To overcome this
problem, the points from the model, i.e., the vertices of the triangle mesh
are organized in a spatial data structure that enables fast range and nearest
neighbor (NN) searches. For each point in the point cloud the closest point
in the mesh is found and assigned the scalar temperature value. R-trees have
proven to be an efficient data structure for solving the scalar field mapping
problem [39], but the original kD-tree based solution produces the model
with better quality and scalar field mapping precision. An R-tree organizes
spatial objects by defining bounding boxes that contain all objects indexed
by the child nodes. In the case of scalar field mapping the bounding box
of leaf nodes contains preferably one or more points that are vertices of a
polygonal face. The size of these bounding boxes influences the precision of
the NN search result and thus the overall quality of the scalar field mapping
as shown in [39].

6.3. Improving the general precision of the model reconstruction
One of the major drawbacks of the presented reconstruction and scalar

field mapping is the precision. The precision of the reconstructed model is
mainly affected by the density of the point cloud [41]. In our case, the average
density of the point cloud is greatly affected by outliers that increase the size
of the bounding box of the model. These outliers are often noise caused by
reflections from windows or simply objects that are seen through the window
and are not of interest for the model.
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This corresponds to a typical point cloud segmentation problem, where
the point cloud is to be segmented into several smaller parts. The task given
here differs from other segmentation problems as we can assume that valid
points and invalid points will be somewhat disconnected. Thus, a connectiv-
ity criterium based on K-means clustering effectively eliminates points that
are problematic for the reconstruction of the 3D model without the need for
time and resource consuming segmentation algorithms. A choice of K = 4
has shown to give good results in the experiments. In general, it is not easy
to conclude the perfect number of clusters from the data. Standard tech-
niques for choosing the initial number of clusters are much slower and tend
to choose a number much higher than necessary, thus removing many of the
valid points [41].

6.4. Detection of thermal features in the model
Heat sources are identified by analyzing the scalar field values contained

in the 3D model of an indoor environment based on a high local increase
of temperature. In buildings, sources of heat are radiators with pipes, air
conditioners, incandescent lights and other electrical equipment emitting high
amounts of infra-red radiation. We observe from Figure 11 that computer
monitors and light bulbs are major sources of heat. The detection can be
considered as a typical image processing task, but in our case a full 3D model
(or at least 3D point cloud) makes the task more complicated. In [42] we
analyze scalar value thresholding, K-means clustering and Fuzzy c-means.
The scalar value thresholding method from [49] was modified so that all
vertices in the mesh, with a temperature value succeeding a threshold, are
marked as potential heat sources. K-means and Fuzzy c-means cluster the
points from the model based on their temperature values. In [42] we show
that K-means shows the most promising results, with fuzzy c-means having
somewhat worse performance, but with almost the same quality.

6.5. Reconstructed model
Figure 12 shows the reconstruction of one part of the scanned indoor en-

vironment, a scan taken in room 1. The model contains close to 11,926,000
points for a volume of less than 200m3. Compared to the data sets pre-
sented in [5], [27] and [33], this data set is rather small and the expected
precision is lower. However, it is clear that geometry is preserved, although
the precision when it comes to reconstructing furniture, computer monitors,
and people is not sufficient. To increase precision, a larger space subdivision

31



Figure 11: Top: Reconstructed 3D model of an office with furniture, lamps,
computers etc. Bottom: Colored point cloud of the same office.

is needed. This comes at the expense of higher computing power and mem-
ory requirements to store the model [40]. Time performance dependence on
spatial subdivision for the part of the dataset is given in Table 3.

To evaluate the obtained model visual perception of an expert is neces-
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Figure 12: Image of a point cloud (left) captured at scan position 12 in office
room 3 and the reconstruction (right)

Figure 13: Reconstructed 3D model of an office (room 1 from Figure 6);
Left: the original point cloud divided into four clusters, one with valid points
(green) and three with problematic points that were seen through the win-
dow and are thus far away from the building that is supposed to be modeled;
Right: the resulting point cloud after the removal of the three invalid clusters.
It is quite clear that the volume of the cuboid containing the entire model is
drastically decreased, thus allowing for higher precision in the model recon-
struction. At closer look, one sees that besides the office room (marked with
green) and some parts of the hallway (yellow) there are still some outliers
left that were seen through the window (red). However, their influence on
the volume of the bounding box is minor compared to the removed clusters.

sary [40]. The methodology presented in section 6.3 attempts to minimize the
local error. We managed to increase the point cloud density by the factor of
≈ 50. In the end this decreases the reconstruction error to a few centimeters
compared to the original 10-20 cm [41]. In Figure 13 the benefit of removing
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Table 3: Spatial subdivision influence on time performance of the reconstruc-
tion algorithm

Subdivision 50 100 150
Execution Time 6.2 seconds 24.9 seconds 55.1 seconds
Number of Polys 41322 195824 501229

Figure 14: The left image shows the model that serves as an input for the
detection algorithm; the right image shows potential heat sources labeled
with purple color

problematic points is clearly shown. The reconstruction algorithm takes a
point cloud with much higher density as an input and produces a model with
higher precision.

Finally, we present the results of the detection of heat sources in the
discussed environment. There are several sources of heat in this model and
they have a color ranging from orange to red. These points have the surface
temperature from roughly 35 ◦C to 60 ◦C. In Figure 14 we present the input
model and the output of the detection algorithm which labels the potential
heat sources.

7. Conclusions

This article presents a complete system for autonomous 3D exploration
and thermal mapping of an indoor environment. The data is autonomously
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collected, thermal and color information is automatically mapped onto the
3D data and the environment is reconstructed into a thermal model. To per-
ceive the entire environment we propose a model based 3D sensor placement
approach that uses a voxel representation and room extraction to drastically
decrease the computational requirements while still reaching high accuracy.
A viewer is presented to analyze the reconstructed model afterwards and to
inspect the automatically detected points of interest in the data.

The work presented here is fundamental research and does not claim to
offer a ready to use product. The system is a first step towards a tool that
targets at improving the effectiveness of indoor thermography. The main
goal, to design a system that autonomously collects the data necessary to
create a model and perform the thermal analysis of a building with this
model, is achieved. The system is designed to point out possible problems in
the data to an experts who interprets them with his experience and expertise.
Hotspots as they appear in heat sources and power lines were chosen as an
example here. The general idea works the same for cold spots. The system is
more adequate for indoor office buildings or for very cluttered environments,
in which the room extraction algorithm will find a closed loop in the part of
the environment that is not a real room.

However, setting a predefined maximal cuboid size supports the explo-
ration of larger rooms. If the currently collected data reaches the predefined
maximal cuboid size, the algorithm will switch to the 3D phase using a cuboid
part of the environment that does not exceed the allocated memory. In our
future work, we plan to extend the algorithm for such cases by considering
possibilities of finding virtual rooms inside a large room.

The majority of work that still has to be done lies in the post processing,
the model building and the detection of thermal flaws. As the interpretation
of thermal data underlies the strong influence of the material properties and
the external conditions such as room temperature and humidity, it is very
hard to make decisions automatically. A system, such as this, aims at point-
ing out points of interest to the expert. In this paper, a method is presented
that aims at pointing out hot spots, as they appear in heat sources and power
lines. The evaluation of the effectiveness of this approach for real thermal is-
sues is still subject to further research. For the detection of cold spots, such as
thermal bridges, it is generally possible to use the same method with a lower
boundary. However, it is to be expected that the temperature differences
are much lower and therefore harder to detect. Machine learning approaches
could help in detecting and classifying these points of interest. Some prelim-
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inary work on automated Building Information Modeling (BIM) from laser
scans by detecting doors and windows have been presented [57, 53, 17]. We
have extended this work by labeling windows in 3D thermal data [16]. Future
work will build upon this work and further investigate the use of machine
learning for interpreting thermal 3D models.

We plan to further improve the precision of the 3D model by analyzing
other factors that influence low point cloud density. A more effective method
for removing invalid points using associations based on connectivity might
lead to better results. In this work we focused on creating the 3D ther-
mal model. The point cloud viewer offers the possibility to switch between
thermal and color mode. A good method has to be found to make the re-
constructed model available with both modalities as well. Possibilities are
to switch between the two models, to create a model with one modality and
add the option to show the corresponding image of the other modality at a
certain spot, or to overlay the color model with the thermal information, thus
modifying the color space of regions with temperature peaks and keeping the
true color for the other areas.
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