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Abstract: Sliding window object detection has received remarkable attention in recent years
due to great versatility and extraordinary detection performance. However, straightforward
applications of the concept fail to meet criteria of real applications due to insufficient precision
and inaccurate localization. Localization accuracy is especially important when the detection
needs to be followed by recognition. In this paper, we present a detection approach which
completely obviates the need for blind spatial clustering of nearby detection responses, which is
known as a major factor of localization inaccuracy. The approach has been evaluated on traffic
sign detection, where we consider the superclass of triangular warning signs. The obtained results
confirm the viability of the approach and provide useful directions for future work.
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1. INTRODUCTION

Object detection is an essential step in many computer
vision applications and a prerequisite for successful object
recognition. Therefore it is not surprising that it gains
much attention in the computer vision community. Aside
from the approaches that utilize some specific properties
of objects to be detected, such as color or characteristic
shape, many recent systems rely on generic, machine-
learned binary classification in a sliding window: Viola
and Jones (2004); Dalal and Triggs (2005); Zaklouta and
Stanciulescu (2011). In this setup, the classifier trained on
a large set of examples is applied to various image locations
at different spatial scales and typically generates multiple
responses that subsequently need to be grouped into
distinct high-level detections. The grouping stage usually
performs spatial clustering of raw detector responses and
substitutes the obtained clusters with some form of average
windows.

Although this kind of filtering certainly reduces the error
by choosing the most probable object location, the final
result is rarely perfectly aligned with the actual object
position. This localization error can significantly affect the
subsequent stage of object recognition. However, most of
the papers on object detection report only on the detection
recall and precision. In some studies (e.g. Dalal and Triggs
(2005)) the detector performance is tested on cropped
images of objects, while others evaluate their detectors on
whole images with ground truth annotated in a separate
file. The reported success of the detection is usually based
on the relative area of overlap between the estimated
bounding box and the ground truth reference.
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In our previous work on traffic sign detection and recog-
nition (Segvié et al. (2010)) we obtained very good detec-
tion rates (96%) by utilizing a standard cascaded boosted
Haar classifier (Viola and Jones (2004)). The problem of
relatively low precision was addressed in Bonaci et al.
(2011) by adding a stronger, specifically trained classi-
fier that significantly reduced false positives. A neural
network classifier was trained by a bootstrap procedure
(Sung and Poggio (1998); Xiao et al. (2003)) and added as
the last stage of the cascade. Nevertheless, we noted that
the localization inaccuracy of detector responses degraded
the performance of subsequent recognition process. Such
effects were also discussed by Rodriguez et al. (2006), who
demonstrated that localization accuracy of face detection
can dramatically influence the performance of face verifi-
cation applications. We tried to address this issue in Segvié
et al. (2011) by enforcing temporal consistency of the
detections through video sequence. The procedure is based
on combining the detections obtained from the boosted
Haar detector with a differential tracker (Shi and Tomasi
(1994)). However, the detector employed to initialize the
tracker and to disambiguate the hypothesized tracks uses
blind spatial clustering of multiple detection responses.
In that way, some possibly very accurate detections are
substituted by average counterparts, leading to decreased
localization performance. In this paper we explore the as-
sumption that raw, ungrouped detections have significant
potential that could be exploited in an interplay with the
tracker. To reach that goal, and simultaneously suppress
the potential explosion of false positives, we propose to
avoid the heuristic grouping of the detector responses.

The paper is organized as follows. We first describe the
datasets used for training and evaluation of the system in
Section 2. The proposed organization of object detection
system is presented in Section 3. The Section 4 reports



on the evaluation of the proposed approach. The paper is
concluded in Section 5.

2. DATASETS AND ASSUMPTIONS

The experimental evaluation has been performed in the
context of traffic sign detection, on videos supplied by
our industrial partner. The videos were acquired by a
higher-level consumer-grade camera mounted on the top
of a vehicle, along the Croatian local roads (cf. Fig.1 and
Fig.3).

Fig. 1. The acquisition vehicle from outside (left), and
inside (right).

To ensure proper testing and training, a large sample
collection was acquired and carefully annotated. Each
physical sign is annotated in four video frames at regular
intervals (Fig. 2). The resulting collection contains about
7500 annotations of different sign classes.

Fig. 2. Each sign annotated in four frames as illustrated
in the figure.

In this study we focus on the class of danger warning signs
since they are most frequent (3000 of 7500 annotations
in our dataset). Similar results can be expected for other
ideogram-based signs. As described in Segvié et al. (2011),
we organize the 3000 annotated samples of danger warning
signs into two datasets: (i) T2009, containing 2000 signs
acquired with an interlaced camera; (ii) T2010, containing
1000 signs acquired with a progressive scan camera. The
T2009 dataset (cf. Fig. 3(c)) is used for training, and
T2010 (cf. Fig. 3(d)) for evaluation®.

3. THE PROPOSED APPROACH

The detection procedure based on cascading classifiers of
increasing complexity has proven its performance in many
applications. Therefore the proposed approach follows the
same track by configuring the baseline sliding window
detector for high recall. However, we try to omit the
heuristic grouping and devise additional techniques to
improve precision and localization accuracy. Since well
trained baseline detectors generate relatively small number
of false positives (e.g. less than 10 per image), these

1 Both the datasets and our annotation tool can be freely down-
loaded from the web site of our research project:
http://www.zemris.fer .hr/~ssegvic/mastif/datasets.shtml
http://www.zemris.fer .hr/~ssegvic/mastif/marker/marker.zip.
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Fig. 3. Typically, the traffic signs leave the field of view
when they are about 80x80 pixels large (a). However
they may be smaller due to lateral displacement (b).
Noisy pixels, motion blur (¢) and unreliable colours
are common (d).

additional techniques can be computationally expensive
without hurting overall performance.

The concept of heterogeneous classification cascades can
be further pursued at the level of temporal detection
sequences in video. Therefore we propose the following
detection pipeline (cf. Fig.4): (i) baseline sliding window
detection; (ii) introducing a strong classifier in the addi-
tional cascade stage to improve precision; (iii) enforcing
temporal consistency to improve localization accuracy and
further improve precision; (iv) enforcing learned contex-
tual constraints to further improve precision. The last two
stages operate on detection tracks — temporal sequences
of traffic sign position, scale and appearance. This paper
focuses on the first three steps of the presented pipeline.

3.1 Baseline detection

The baseline detection is performed by a boosted Haar
cascade, however many other sliding window detectors
would equally be applicable.. The classifier is composed
of a cascade of increasingly more complex stages. Each
stage consists of extremely simple classifiers implemented
as single Haar features with associated polarity and thresh-
old. These weak classifiers are composed by a boosting
procedure into an ensemble forming a strong classifier.

Due to the increasing complexity of the cascade and its
specific training, such classifier is able to quickly discard
candidate image patches unlikely to contain the object of
interest. As usually only a few image locations contain ob-
jects, this approach is extremely computationally efficient
in sliding window detection. The complexity of each stage
is tuned by training on increasingly harder examples (false
positives from earlier stages).

By using this approach, we obtained encouraging recall
of more than 95% signs detected in Segvi¢ et al. (2010).
However, boosted Haar cascades alone do not provide
enough performance for automated operation. The main
concerns are: (i) unsatisfactory precision (50% or lower),
due to poor generalizing over unseen negatives; (ii) lo-
calization inaccuracy, which can lead to poor recognition
rates (Segvié et al. (2010),Rodriguez et al. (2006)).
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Fig. 4. The proposed detection pipeline (please see text for details).

3.2 Improving the detection by bootstrap training

As proposed in Bonagéi et al. (2011) we build a heteroge-
neous cascade for object detection in images. The baseline
detector is used for fast rejection of easy negatives, while
a stronger classifier is employed to deal with the hard
cases. The additional classifier stage is implemented as a
suitable artificial neural network using a HOG descriptor
(Dalal and Triggs (2005)) as feature vector. Experiments
have shown that the choice of the strong classifier is not
critical since we obtained very similar results with an SVM
classifier operating on the same feature vector.

The boosted Haar cascade is trained for maximum recall
and reasonable precision on the T2009 dataset, while the
additional ANN classifier is trained on the false positives of
the Haar cascade applied to the background images from
the same dataset. This kind of collecting hard negative
examples is known as bootstrap training (Sung and Poggio
(1998); Xiao et al. (2003)).

It is worth noting that the additional classifier stage must
be applied before the spatial grouping step. Otherwise, the
grouping may result in an alignment poorly represented in
the learning set and consequently lead to drastic drop in
detection rate.

By using the bootstrap filter we obtained a significant
precision improvement, while only slightly harming the
recall and slightly enhancing the localization accuracy. The
resulting time penalty is typically very small (about 20 ms)
since our boosted Haar cascades typically pass through
less than ten false positives. Fig. 5 illustrates the effect of
the ANN filter applied to the output of a boosted Haar
cascade. However, some hard false positives still survive
(cf. Fig. 6).

Fig. 5. The responses of a Boosted Haar cascade (blue),
and the detections accepted by a suitably trained
bootstrap filter (ANN+HOG, red).

Fig. 6. Some hard false positives remain even after apply-
ing the bootstrap filter.

3.3 Extracting temporally consistent detection tracks

All previously described approaches try to detect objects
in individual images. However, image sequences carry
dynamic information that can be utilized to improve
the detection (Grabner et al. (2005)). The main idea of
this component is to require the detection sequences to
be temporally consistent, as proposed in Segvi¢ et al.
(2011). To obtain that goal we track many detection
hypotheses along the sequence, as shown in Fig. 7. During
the tracking, the nearby detection responses are recorded
as evidence which supports the hypothesis. When the
tracked object leaves the field of view, we are able to
pick the hypothesis which received most support from the

detections.
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Fig. 7. Development of 6 distinct hypotheses (rows) in
frames 9063-9072 (columns) of the test video. The
lattice entries contain raw detections which confirm
the corresponding hypothesis. Empty squares indicate
frames in which the particular hypothesis has not
been confirmed. Thus the most prominent hypothesis
is the fourth from the top (7 confirmations).

This approach has several benefits in comparison to simple
detection chaining. First, it is able to reject false pos-
itives which are either temporally inconsistent or large.
Additionally, such approach is able to achieve better lo-
calization due to i) lack of blind spatial clustering, and ii)



integrating evidence from many frames. Finally, the strict
tracking constraints improve the chances for distinguishing
small objects from background clutter.

The proposed approach operates as shown in Fig. 8.
New detection track hypotheses are seeded in the inte-
rior of each raw detection which happens to be displaced
(cf. thNewTrack) from all active hypotheses (we do not track
entire signs in order to avoid problems due to variable
background). The hypotheses are maintained by combin-
ing the detector and the tracker (cf. thResume), somewhat in
the spirit of particle filter. The tracks are receiving support
from detector responses in their vicinity (cf. thContirm).
Overlapping hypotheses are grouped together into clusters
(cf. thNewTrack) corresponding to distinct physical signs.
When all hypotheses of a cluster are lost, the hypothesis
with most evidence from raw detections is selected.

for each image do:
# track existing hypotheses f_i
track (image, f_i)

# extract raw detections g_j
detect (image, g_j)

# determine distance matrix between
# features f_i and detections g_j
calculateDistance(f_i, g_j, M)

# try to resume the tracking
for each lost feature f_i:
find the closest detection g_j
if M[il[j] < thResume:
try to resume f_i starting from g_j

# seed new hypotheses
for each detection g_j:
find the closest feature f_i
if M[il[j]l > thNewTrack:
start a new trajectory f_k at g_j
if M[i]l[j] > thNewGroup:
f_k.cluster=createNewCluster ()
else
f_k.cluster=f_i.cluster
# evaluate hypotheses
for each feature f_i:
find the closest detection g_j
if M[il[j]l < thConfirm:
f_i.nConfirmations+=1

Fig. 8. The proposed algorithm for extracting temporally
consistent detection tracks

In order to be able to collect a swarm of concurent hy-
potheses, we set both thresholds thResume and thNewTrack to
0.1 (this is much lower than in Segvié et al. (2011)). Hence,
the system generates much more hypotheses than before,
and consequently improves the chances for early genera-
tion of well-localized hypotheses. As in our previous work,
we characterize the distance between the hypothesized
detection tracks f; and the detections g; as a normalized
overlap between the two windows.

d(fi;gj) -1 area(fi mgj) (1)

max(area(f;), area(g;))

In exceptional cases when the windows are disjoint, we in-
stead employ a scale-normalized Euclidean distance (Roth
(2008)) with a penalization factor on scale difference.

4. EXPERIMENTAL RESULTS

We first present experiments on individual images which
suggest that avoiding the spatial clustering of raw de-
tections may favourably affect the detection performance.
Subsequently, we present the results of a complete detec-
tion system featuring the proposed organization. We espe-
cially look at the localization accuracy as a performance
indicator which has been often overlooked in previous
work.

4.1 Measuring the localization error

We evaluate the localization accuracy by comparing the
detection responses with hand-annotated groundtruth.
The comparison is performed by honouring the inability of
our basic detector to extract non-square detection candi-
dates. We employ a slightly modified distance function (1),
in which the height of the detection response is modified
in order to match the aspect ratio of the annotation. This
is equivalent to requiring that the detection needs to be
correctly aligned with the bottom, left, and the right edges
of the annotation bounding box.

4.2 Detection performance in individual images

In these experiments we evaluate the influence of filter-
ing and spatial clustering to the following indicators of
the detection performance: the detection recall (fraction
of correctly identified traffic signs), the number of false
positives (#FP) per image, as well as mean and median
localization errors. The results are summarized in Table 1
for all four possible choices of employing the spatial clus-
tering (grouping) and bootstrap filtering, or not. The table
shows that filtering substantially reduces the incidence of
false positives, and only slightly deteriorates the recall and
the localization accuracy of unclustered detections. Spatial
clustering also suppresses the false positives, however at a
price of increased localization uncertainty (this effect is
smaller when grouping filtered detections).

Table 1. Quality of raw detection responses.

configuration || recall #FP/image localization
no filter, no grouping 95% 9.5 0.070, 0.055
no filter, grouping 95% 2.4 0.171, 0.163
filter, no grouping 91% 2.5 0.095, 0.063
filter, grouping 91% 0.35 0.150, 0.139

These effects are presented in more detail in Fig. 9, as
particular distributions of the localization error in the four
distinct cases considered above. The rows contain distri-
butions obtained without (top) and with (bottom) the
bootstrap filter. The columns show distributions obtained
without (left) and with (right) the spatial grouping. The
increase of the localization error due to spatial clustering
can be perceived by considering the transition from the
left towards the right graphs in each of the two rows. On
the other hand, by considering the transitions from the
top towards the bottom, we see that filtering only slightly



disturbs the localization accuracy when no grouping is
performed, while actually improving the localization of the
detection clusters.
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Fig. 9. Distribution of the localization error in the four
cases from Table 1. The rows contain distributions
obtained without (top) and with (bottom) the boot-
strap filter. The columns show distributions obtained
without (left) and with (right) spatial grouping.

4.8 Detection performance in video

Here we present the results of a complete detection system
organized as proposed in Section 3. The proposed organi-
zation allowed us to achieve 100% recall at the system
level: all physical signs from the video have been found in
at least 5 consecutive frames. The present system typically
produces only one false positive in 5000 images, which is
considerably better than in our previous results. The only
two false positives from a video of about 11000 frames are
shown in Fig. 10.

Fig. 10. The only two false positives extracted in a video
of about 11000 frames.

We assess the localization accuracy by employing the
methodology from the previous subsection. Fig. 11 shows
the distribution of the localization error which has been
estimated by comparing the extracted detection tracks
with the groundtruth. We succeeded to associate 706
of the total 1037 annotations with individual detection
track patches. In our view this is a very good result
since most large annotations are located near the margin,
where our tracker is not operable. In comparison with
our previous system which employs grouping but not
bootstrap filtering , the mean relative localization error
has improved from about 0.12 to about 0.10 (Segvié
et al. (2011), cf. Fig 11). We note that the improvement
in localization accuracy noticeably improved downstream
recognition results 2 , although the detailed analysis of that
effect is out of the scope of this paper.

As before, we have tried to compare the performance of
our approach (filtering, no grouping) with other three
configurations. Unfortunately, this was not an easy task

2 Video presentation of our current results can be viewed from:
http://www.zemris.fer .hr/~ssegvic/pubs/syrocol2.avi

to do, since our present system could not accomodate
the two approaches without the filtering due to excessive
memory constraints. We did have some success in making
our system run in the case of filtering-grouping, however
about 10% of physical signs have not been located, so that
any comparisons would not be sensible.

Fig. 11. Distribution of the localization error in the detec-
tion tracks extracted by the proposed approach (left).
Our previous best result is shown for comparison
(Segvié et al. (2011), right).

5. CONCLUSION

This paper presented a novel organization of a moving
object detection system based on binary classification in a
sliding window. The proposed organization is suitable for
simultaneously achieving the three main goals of object
detection: high recall, high precision, and accurate local-
ization. The main idea of the proposal is to omit blind
spatial clustering of raw detections in order to preserve
their localization accuracy. Instead, the raw detections are
associated temporally by requiring consistent appearance
throughout the sequence. This temporal grouping results
in a redundant swarm of detection tracks corresponding
to hypothesized sequences of object location in time. The
final decision is deferred until none of the hypotheses from
the swarm can be located in the current video frame.
Thus, our approach is able to accumulate the evidence
collected by processing all video frames in which the object
of interest is within the field of view.

The presented experiments have been performed on a
large test dataset of 1000 triangular warning traffic signs
annotated by hand with tight bounding boxes. The test
dataset is completely independent from the datasets em-
ployed to train the basic detector and the bootstrap filter.
The experiments show that the responses obtained by
blind spatial clustering are considerably worse localized
than the best individual raw detections. The downgrade
is especially noticeable for spatial clusters of basic detec-
tor responses (localization error increased by 100%), but
significant effect is also observed for clustered boostrap
filter outputs (localization error increased by 50%). The
proposed organization succeeds to avoid spatial clustering
while at the same time achieving excellent recall (all phys-
ical signs are properly detected) and competitive precision
(about 1 false positive in 5000 frames).

The presented research is relevant for various applications
of moving object detection. This is especially true in
cases when the detected objects subsequently need to be
identified, since the recognition is known to be sensitive
to the localization accuracy (Rodriguez et al. (2006)).
Interesting directions for future work include evaluating
the proposed organization on semirigid and articulated
objects such as faces and pedestrians. Future challenges
include simultaneous detection of different sign classes and
generic detection of table-like objects.
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