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Problem statement

I Closed architecture robotic arms

refq
RobotController

q

Closed architecture robot

I Usually position controlled
I Independent PD control (no dynamics model)
I Cannot directly manipulate torque or voltage

I Performance degrades for fast trajectories
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Proposed solution

I Rigid Body Dynamics?

I Learn the dynamics of the closed architecture robotic arm
(controller + robot)

I Use learned model for control to achieve better performance

refq

refq

refq
q

psq

fbq

-

Learned Model Robot
+

+

+

K

Figure: Nonlinear feedforward control strategy
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Our system

I 6 DOF robotic arm

I Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm
(source: www.robotics.tu-berlin.de)

I Six revolute joints

I Controller

I separate PD control of every joint
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Data collection

I Random samples from the joint state space for data collection

I 1 kHz sampling rate
I 50000 samples acquired

I Whole state space not just specific trajectories
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Figure: Data collection
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Regression

I Gaussian Process Regresions (GPR) [Rasmussen 2006]

I Non-parametric method
I Defined by mean and covariance
I Easy to use, good performance

I Given n input-output pairs

I Training is O(n3)
I Prediction of mean is O(n)
I Prediction of variance is O(n2)
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GPR

I GPR model
y = f (x) + ε (1)

I Predictive distribution

p(y∗|x∗,X,Y) = N (µ∗, σ
2
∗) (2)

where
µ∗ = k∗(K + σ2nIn)−1y, (3)

σ2∗ = σ2n + k∗∗ − k∗(K + σ2nIn)−1)k∗
T . (4)

I Properties of latent function depend on a set of hyperparameters

I Optimization of log marginal likelihood - log p(Y|X)
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Sparse approximation of GPR

I Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]

I m - the number of spectral frequencies (m << n)
I Given n input-output pairs

I Training is O(m2n)
I Prediction of mean is O(m)
I Prediction of variance is O(m2)

I Incremental SSGP [Gijsberts 2013]

I Update is O(1) (can run forever)
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Results
Offline identification and timing

Table: Inverse model identification for the simulated Puma 560 robotic
manipulator

Method m n ntest Mean Std. dev. RMS error Training time

GPR - 15000 5000 3.1623e − 04 7.4755e − 04 8.1162e − 04 12 [h]
SSGPR fix 100 15000 5000 0.0103 0.0462 0.0173 92 [s]
SSGPR fix 300 15000 5000 0.0069 0.0310 0.0129 495 [s]
SSGPR fix 500 15000 5000 0.0038 0.0250 0.0167 742 [s]
SSGPR fix 800 15000 5000 0.0016 0.0126 0.0089 1444 [s]
SSGPR fix 1000 15000 5000 0.0009 0.0181 0.0056 18029 [s]
SSGPR fix 2000 15000 5000 0.0002 0.0089 0.0014 51054
SSGPR full 100 15000 5000 0.0094 0.0125 0.0156 142 [s]
SSGPR full 500 15000 5000 0.0006 0.0020 0.0021 1624 [s]
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Results
Closed loop control

I Test trajectories

I For the i th joint we have

qi (k) =

Ni∑
l=1

(
ail sin(ωf lkTs)− bil sin(ωf lkTs)

)
(5)

I Analytically differentiable
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Results
Closed loop control

0 1 2 3 4 5 6 7 8
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

T
ra

c
k
in

g
 e

rr
o
r 

[r
a
d
]

 

 

PD control

FF with SSGPR model

Figure: Joint 1 tracking error comparison
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Results
Closed loop control

Table: Closed loop performance of PD and Feedforward control approaches

Value Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6

FF mean 2.599e − 3 2.556e − 3 645.168e − 6 112.460e − 6 98.753e − 6 101.983e − 6
PD mean 28.775e − 3 35.688e − 3 22.342e − 3 20.979e − 3 20.845e − 3 20.430e − 3
FF std. dev 1.674e − 3 1.996e − 3 409.393e − 6 77.7326e − 6 77.433e − 6 80.513e − 6
PD std. dev. 5.717e − 3 6.381e − 3 3.828e − 3 2.799e − 3 2.859e − 3 3.125e − 3
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Results
On-line adaptation

Table: One-step prediction errors for different trajectories. Trajectories are
ordered by how much they differ from the training state space

Method GPR SSGPR ISSGPR

Trajectory 1 7.9× 10−9 0.0011 3.2× 10−4

Trajectory 2 6.5× 10−8 0.0016 8.7× 10−4

Trajectory 3 369.1862 0.1985 0.0036
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Conclusion

I Proof-of-concept shown

I Verified via simulation
I Future work

I State estimation
I Physical arm

Figure: Schunk LWA 4.6
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Thank you for your attention

Questions?
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