Learning control for positionally controlled manipulators

Domagoj Herceg ${ }^{1}$, Dana Kulić ${ }^{2}$, and Ivan Petrović ${ }^{1}$
${ }^{1}$ Department of Computer and Control Engineering Faculty of Electrical and Computer Engineering University of Zagreb, Unska 3, 10000 Zagreb, Croatia
${ }^{2}$ Department of Electrical and Computer Engineering University of Waterloo, Ontario, Canada

September 11, 2013

university of
Waterloo

Problem statement

- Closed architecture robotic arms

Problem statement

- Closed architecture robotic arms

- Usually position controlled

Problem statement

- Closed architecture robotic arms

- Usually position controlled
- Independent PD control (no dynamics model)

Problem statement

- Closed architecture robotic arms

- Usually position controlled
- Independent PD control (no dynamics model)
- Cannot directly manipulate torque or voltage

Problem statement

- Closed architecture robotic arms

- Usually position controlled
- Independent PD control (no dynamics model)
- Cannot directly manipulate torque or voltage
- Performance degrades for fast trajectories

Proposed solution

- Rigid Body Dynamics?

Proposed solution

- Rigid Body Dynamics?
- Learn the dynamics of the closed architecture robotic arm (controller + robot)

Proposed solution

- Rigid Body Dynamics?
- Learn the dynamics of the closed architecture robotic arm (controller + robot)
- Use learned model for control to achieve better performance

Figure: Nonlinear feedforward control strategy

Our system

- 6 DOF robotic arm

Our system

- 6 DOF robotic arm
- Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

Our system

- 6 DOF robotic arm
- Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

- Six revolute joints

Our system

- 6 DOF robotic arm
- Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

- Six revolute joints
- Controller

Our system

- 6 DOF robotic arm
- Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

- Six revolute joints
- Controller
- separate PD control of every joint

Data collection

- Random samples from the joint state space for data collection

Data collection

- Random samples from the joint state space for data collection
- 1 kHz sampling rate

Data collection

- Random samples from the joint state space for data collection
- 1 kHz sampling rate
- 50000 samples acquired

Data collection

- Random samples from the joint state space for data collection
- 1 kHz sampling rate
- 50000 samples acquired
- Whole state space not just specific trajectories

Figure: Data collection

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method
- Defined by mean and covariance

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs
- Training is $\mathcal{O}\left(n^{3}\right)$

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs
- Training is $\mathcal{O}\left(n^{3}\right)$
- Prediction of mean is $\mathcal{O}(n)$

Regression

- Gaussian Process Regresions (GPR) [Rasmussen 2006]
- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs
- Training is $\mathcal{O}\left(n^{3}\right)$
- Prediction of mean is $\mathcal{O}(n)$
- Prediction of variance is $\mathcal{O}\left(n^{2}\right)$

GPR

- GPR model

$$
\begin{equation*}
y=f(\mathbf{x})+\epsilon \tag{1}
\end{equation*}
$$

GPR

- GPR model

$$
\begin{equation*}
y=f(\mathbf{x})+\epsilon \tag{1}
\end{equation*}
$$

- Predictive distribution

$$
\begin{equation*}
p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{X}, \mathbf{Y}\right)=\mathcal{N}\left(\mu_{*}, \sigma_{*}^{2}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
\mu_{*}=\mathbf{k}_{*}\left(\mathbf{K}+\sigma_{n}^{2} \mathbf{I}_{\mathbf{n}}\right)^{-1} \mathbf{y} \tag{3}\\
\left.\sigma_{*}^{2}=\sigma_{n}^{2}+\mathbf{k}_{* *}-\mathbf{k}_{*}\left(\mathbf{K}+\sigma_{n}^{2} \mathbf{I}_{\mathbf{n}}\right)^{-1}\right) \mathbf{k}_{*}^{T} . \tag{4}
\end{gather*}
$$

GPR

- GPR model

$$
\begin{equation*}
y=f(\mathbf{x})+\epsilon \tag{1}
\end{equation*}
$$

- Predictive distribution

$$
\begin{equation*}
p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{X}, \mathbf{Y}\right)=\mathcal{N}\left(\mu_{*}, \sigma_{*}^{2}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
\mu_{*}=\mathbf{k}_{*}\left(\mathbf{K}+\sigma_{n}^{2} \mathbf{I}_{\mathbf{n}}\right)^{-1} \mathbf{y} \tag{3}\\
\left.\sigma_{*}^{2}=\sigma_{n}^{2}+\mathbf{k}_{* *}-\mathbf{k}_{*}\left(\mathbf{K}+\sigma_{n}^{2} \mathbf{I}_{\mathbf{n}}\right)^{-1}\right) \mathbf{k}_{*}^{T} . \tag{4}
\end{gather*}
$$

- Properties of latent function depend on a set of hyperparameters

GPR

- GPR model

$$
\begin{equation*}
y=f(\mathbf{x})+\epsilon \tag{1}
\end{equation*}
$$

- Predictive distribution

$$
\begin{equation*}
p\left(y_{*} \mid \mathbf{x}_{*}, \mathbf{X}, \mathbf{Y}\right)=\mathcal{N}\left(\mu_{*}, \sigma_{*}^{2}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
\mu_{*}=\mathbf{k}_{*}\left(\mathbf{K}+\sigma_{n}^{2} \mathbf{I}_{\mathbf{n}}\right)^{-1} \mathbf{y} \tag{3}\\
\left.\sigma_{*}^{2}=\sigma_{n}^{2}+\mathbf{k}_{* *}-\mathbf{k}_{*}\left(\mathbf{K}+\sigma_{n}^{2} \mathbf{I}_{\mathbf{n}}\right)^{-1}\right) \mathbf{k}_{*}^{T} . \tag{4}
\end{gather*}
$$

- Properties of latent function depend on a set of hyperparameters
- Optimization of log marginal likelihood $-\log p(\mathbf{Y} \mid \mathbf{X})$

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$
- Given n input-output pairs

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$
- Given n input-output pairs
- Training is $\mathcal{O}\left(m^{2} n\right)$

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$
- Given n input-output pairs
- Training is $\mathcal{O}\left(m^{2} n\right)$
- Prediction of mean is $\mathcal{O}(m)$

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$
- Given n input-output pairs
- Training is $\mathcal{O}\left(m^{2} n\right)$
- Prediction of mean is $\mathcal{O}(m)$
- Prediction of variance is $\mathcal{O}\left(\mathrm{m}^{2}\right)$

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$
- Given n input-output pairs
- Training is $\mathcal{O}\left(m^{2} n\right)$
- Prediction of mean is $\mathcal{O}(m)$
- Prediction of variance is $\mathcal{O}\left(\mathrm{m}^{2}\right)$
- Incremental SSGP [Gijsberts 2013]

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- m - the number of spectral frequencies $(m \ll n)$
- Given n input-output pairs
- Training is $\mathcal{O}\left(m^{2} n\right)$
- Prediction of mean is $\mathcal{O}(m)$
- Prediction of variance is $\mathcal{O}\left(\mathrm{m}^{2}\right)$
- Incremental SSGP [Gijsberts 2013]
- Update is $\mathcal{O}(1)$ (can run forever)

Results

Offline identification and timing

Table: Inverse model identification for the simulated Puma 560 robotic manipulator

Method	m	n	$n_{\text {test }}$	Mean	Std. dev.	RMS error	Training time
GPR	-	15000	5000	$3.1623 e-04$	$7.4755 e-04$	$8.1162 e-04$	$12[\mathrm{~h}]$
SSGPR fix	100	15000	5000	0.0103	0.0462	0.0173	$92[\mathrm{~s}]$
SSGPR fix	300	15000	5000	0.0069	0.0310	0.0129	$495[\mathrm{~s}]$
SSGPR fix	500	15000	5000	0.0038	0.0250	0.0167	$742[\mathrm{~s}]$
SSGPR fix	800	15000	5000	0.0016	0.0126	0.0089	$1444[\mathrm{~s}]$
SSGPR fix	1000	15000	5000	0.0009	0.0181	0.0056	$18029[\mathrm{~s}]$
SSGPR fix	2000	15000	5000	0.0002	0.0089	0.0014	51054
SSGPR full	100	15000	5000	0.0094	0.0125	0.0156	$142[\mathrm{~s}]$
SSGPR full	500	15000	5000	0.0006	0.0020	0.0021	$1624[\mathrm{~s}]$

Results

Closed loop control

- Test trajectories

Results

Closed loop control

- Test trajectories
- For the $i^{\text {th }}$ joint we have

$$
\begin{equation*}
q_{i}(k)=\sum_{l=1}^{N_{i}}\left(a_{l}^{i} \sin \left(\omega_{f} l k T_{s}\right)-b_{l}^{i} \sin \left(\omega_{f} l k T_{s}\right)\right) \tag{5}
\end{equation*}
$$

Results

Closed loop control

- Test trajectories
- For the $i^{\text {th }}$ joint we have

$$
\begin{equation*}
q_{i}(k)=\sum_{l=1}^{N_{i}}\left(a_{l}^{i} \sin \left(\omega_{f} l k T_{s}\right)-b_{l}^{i} \sin \left(\omega_{f} l k T_{s}\right)\right) \tag{5}
\end{equation*}
$$

- Analytically differentiable

Results

Closed loop control

Figure: Joint 1 tracking error comparison

Results

Closed loop control

Figure: Joint 4 tracking error comparison

Results

Closed loop control

Table: Closed loop performance of PD and Feedforward control approaches

Value	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6
FF mean	$2.599 e-3$	$2.556 e-3$	$645.168 e-6$	$112.460 e-6$	$98.753 e-6$	$101.983 e-6$
PD mean	$28.775 e-3$	$35.688 e-3$	$22.342 e-3$	$20.979 e-3$	$20.845 e-3$	$20.430 e-3$
FF std. dev	$1.674 e-3$	$1.996 e-3$	$409.393 e-6$	$77.7326 e-6$	$77.433 e-6$	$80.513 e-6$
PD std. dev.	$5.717 e-3$	$6.381 e-3$	$3.828 e-3$	$2.799 e-3$	$2.859 e-3$	$3.125 e-3$

Results

On-line adaptation

Table: One-step prediction errors for different trajectories. Trajectories are ordered by how much they differ from the training state space

Method	GPR	SSGPR	ISSGPR
Trajectory 1	7.9×10^{-9}	0.0011	3.2×10^{-4}
Trajectory 2	6.5×10^{-8}	0.0016	8.7×10^{-4}
Trajectory 3	369.1862	0.1985	0.0036

Conclusion

- Proof-of-concept shown

Conclusion

- Proof-of-concept shown
- Verified via simulation

Conclusion

- Proof-of-concept shown
- Verified via simulation
- Future work

Conclusion

- Proof-of-concept shown
- Verified via simulation
- Future work
- State estimation

Conclusion

- Proof-of-concept shown
- Verified via simulation
- Future work
- State estimation
- Physical arm

Figure: Schunk LWA 4.6

Thank you for your attention

Questions?

