Learning control for positionally controlled manipulators

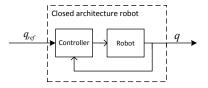
Domagoj Herceg¹, Dana Kulić², and Ivan Petrović¹

¹Department of Computer and Control Engineering Faculty of Electrical and Computer Engineering University of Zagreb, Unska 3, 10000 Zagreb, Croatia

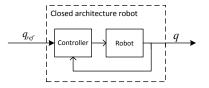
²Department of Electrical and Computer Engineering University of Waterloo, Ontario, Canada

September 11, 2013

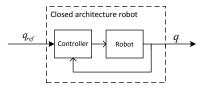
Centre of Research Excellence for Advanced Cooperative Systems



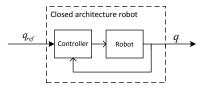
Closed architecture robotic arms



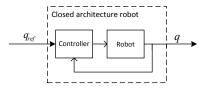
Usually position controlled



- Usually position controlled
- Independent PD control (no dynamics model)



- Usually position controlled
- Independent PD control (no dynamics model)
- Cannot directly manipulate torque or voltage



- Usually position controlled
- Independent PD control (no dynamics model)
- Cannot directly manipulate torque or voltage
- Performance degrades for fast trajectories

Proposed solution

Rigid Body Dynamics?

Proposed solution

- Rigid Body Dynamics?
- Learn the dynamics of the closed architecture robotic arm (controller + robot)

Proposed solution

- Rigid Body Dynamics?
- Learn the dynamics of the closed architecture robotic arm (controller + robot)
- ► Use learned model for control to achieve better performance

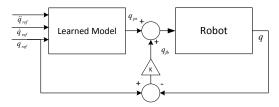


Figure: Nonlinear feedforward control strategy

▶ 6 DOF robotic arm

- 6 DOF robotic arm
 - Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

- 6 DOF robotic arm
 - Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

Six revolute joints

- 6 DOF robotic arm
 - Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

- Six revolute joints
- Controller

- 6 DOF robotic arm
 - Puma 560 (in simulation, Robotics Toolbox)

Figure: Puma 560 robotic arm (source: www.robotics.tu-berlin.de)

- Six revolute joints
- Controller
 - separate PD control of every joint

Random samples from the joint state space for data collection

- \blacktriangleright Random samples from the joint state space for data collection
 - 1 kHz sampling rate

Random samples from the joint state space for data collection

- 1 kHz sampling rate
- ► 50000 samples acquired

Random samples from the joint state space for data collection

- 1 kHz sampling rate
- 50000 samples acquired
- Whole state space not just specific trajectories

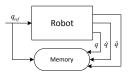


Figure: Data collection

Gaussian Process Regressions (GPR) [Rasmussen 2006]

- ► Gaussian Process Regresions (GPR) [Rasmussen 2006]
 - Non-parametric method

- ► Gaussian Process Regresions (GPR) [Rasmussen 2006]
 - Non-parametric method
 - Defined by mean and covariance

Gaussian Process Regresions (GPR) [Rasmussen 2006]

- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance

Gaussian Process Regresions (GPR) [Rasmussen 2006]

- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs

► Gaussian Process Regresions (GPR) [Rasmussen 2006]

- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs
 - Training is $\mathcal{O}(n^3)$

Gaussian Process Regresions (GPR) [Rasmussen 2006]

- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs
 - Training is $\mathcal{O}(n^3)$
 - Prediction of mean is $\mathcal{O}(n)$

Gaussian Process Regresions (GPR) [Rasmussen 2006]

- Non-parametric method
- Defined by mean and covariance
- Easy to use, good performance
- Given n input-output pairs
 - Training is $\mathcal{O}(n^3)$
 - Prediction of mean is $\mathcal{O}(n)$
 - Prediction of variance is $\mathcal{O}(n^2)$

► GPR model

$$y = f(\mathbf{x}) + \epsilon \tag{1}$$

GPR model

$$y = f(\mathbf{x}) + \epsilon \tag{1}$$

Predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{Y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$
(2)

where

$$\mu_* = \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I_n})^{-1} \mathbf{y}, \tag{3}$$

$$\sigma_*^2 = \sigma_n^2 + \mathbf{k}_{**} - \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I_n})^{-1}) \mathbf{k_*}^T.$$
(4)

GPR model

$$y = f(\mathbf{x}) + \epsilon \tag{1}$$

Predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{Y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$
(2)

where

$$\mu_* = \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I_n})^{-1} \mathbf{y}, \tag{3}$$

$$\sigma_*^2 = \sigma_n^2 + \mathbf{k}_{**} - \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I_n})^{-1}) \mathbf{k_*}^T.$$
(4)

> Properties of latent function depend on a set of hyperparameters

GPR model

$$y = f(\mathbf{x}) + \epsilon \tag{1}$$

Predictive distribution

$$p(y_*|\mathbf{x}_*, \mathbf{X}, \mathbf{Y}) = \mathcal{N}(\mu_*, \sigma_*^2)$$
(2)

where

$$\mu_* = \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I_n})^{-1} \mathbf{y}, \tag{3}$$

$$\sigma_*^2 = \sigma_n^2 + \mathbf{k}_{**} - \mathbf{k}_* (\mathbf{K} + \sigma_n^2 \mathbf{I_n})^{-1}) \mathbf{k_*}^T.$$
(4)

- Properties of latent function depend on a set of hyperparameters
- Optimization of log marginal likelihood $\log p(\mathbf{Y}|\mathbf{X})$

Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)
- Given n input-output pairs

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)
- Given n input-output pairs
 - Training is $\mathcal{O}(m^2 n)$

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)
- Given n input-output pairs
 - Training is $\mathcal{O}(m^2 n)$
 - Prediction of mean is $\mathcal{O}(m)$

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)
- Given n input-output pairs
 - Training is $\mathcal{O}(m^2 n)$
 - Prediction of mean is $\mathcal{O}(m)$
 - Prediction of variance is $\mathcal{O}(m^2)$

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)
- Given n input-output pairs
 - Training is $\mathcal{O}(m^2 n)$
 - Prediction of mean is $\mathcal{O}(m)$
 - Prediction of variance is O(m²)
- Incremental SSGP [Gijsberts 2013]

Sparse approximation of GPR

- Sparse spectrum GP (SSGP) [Lázaro-Gredilla 2010]
- *m* the number of spectral frequencies ($m \ll n$)
- Given n input-output pairs
 - ► Training is O(m²n)
 - Prediction of mean is $\mathcal{O}(m)$
 - Prediction of variance is O(m²)
- Incremental SSGP [Gijsberts 2013]
- ▶ Update is $\mathcal{O}(1)$ (can run forever)

Offline identification and timing

Table: Inverse model identification for the simulated Puma 560 robotic manipulator

Method	т	п	n _{test}	Mean	Std. dev.	RMS error	Training time
GPR	-	15000	5000	3.1623 <i>e</i> - 04	7.4755 <i>e</i> - 04	8.1162 <i>e</i> - 04	12 [h]
SSGPR fix	100	15000	5000	0.0103	0.0462	0.0173	92 [s]
SSGPR fix	300	15000	5000	0.0069	0.0310	0.0129	495 [s]
SSGPR fix	500	15000	5000	0.0038	0.0250	0.0167	742 [s]
SSGPR fix	800	15000	5000	0.0016	0.0126	0.0089	1444 [s]
SSGPR fix	1000	15000	5000	0.0009	0.0181	0.0056	18029 [s]
SSGPR fix	2000	15000	5000	0.0002	0.0089	0.0014	51054
SSGPR full	100	15000	5000	0.0094	0.0125	0.0156	142 [s]
SSGPR full	500	15000	5000	0.0006	0.0020	0.0021	1624 [s]

Closed loop control

Test trajectories

Closed loop control

- Test trajectories
- ▶ For the *i*th joint we have

$$q_i(k) = \sum_{l=1}^{N_i} \left(a_l^i \sin(\omega_f lkT_s) - b_l^i \sin(\omega_f lkT_s) \right)$$
(5)

Closed loop control

- Test trajectories
- ▶ For the *i*th joint we have

$$q_i(k) = \sum_{l=1}^{N_i} \left(a_l^i \sin(\omega_f l k T_s) - b_l^i \sin(\omega_f l k T_s) \right)$$
(5)

Analytically differentiable

Closed loop control

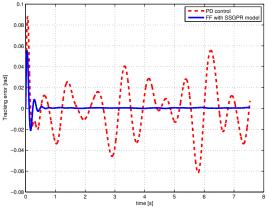


Figure: Joint 1 tracking error comparison

Closed loop control

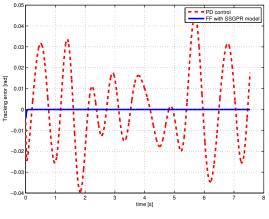


Figure: Joint 4 tracking error comparison

Results Closed loop control

Table: Closed loop performance of PD and Feedforward control approaches

Value	Joint 1	Joint 2	Joint 3	Joint 4	Joint 5	Joint 6
FF mean	2.599 <i>e</i> – 3	2.556 <i>e</i> – 3	645.168e - 6	112.460 <i>e</i> - 6	98.753 <i>e</i> - 6	101.983 <i>e</i> - 6
PD mean	28.775 <i>e</i> – 3	35.688 <i>e</i> - 3	22.342 <i>e</i> - 3	20.979 <i>e</i> - 3	20.845 <i>e</i> - 3	20.430 <i>e</i> - 3
FF std. dev	1.674e - 3	1.996 <i>e</i> - 3	409.393 <i>e</i> - 6	77.7326 <i>e</i> - 6	77.433 <i>e</i> - 6	80.513 <i>e</i> - 6
PD std. dev.	5.717 <i>e</i> - 3	6.381e - 3	3.828 <i>e</i> - 3	2.799 <i>e</i> – 3	2.859 <i>e</i> - 3	3.125e - 3

Results On-line adaptation

Table: One-step prediction errors for different trajectories. Trajectories are ordered by how much they differ from the training state space

Method	GPR	SSGPR	ISSGPR
Trajectory 1	$7.9 imes10^{-9}$	0.0011	$3.2 imes 10^{-4}$
Trajectory 2	$6.5 imes10^{-8}$	0.0016	$8.7 imes10^{-4}$
Trajectory 3	369.1862	0.1985	0.0036

Proof-of-concept shown

- Proof-of-concept shown
- Verified via simulation

- Proof-of-concept shown
- Verified via simulation
- Future work

- Proof-of-concept shown
- Verified via simulation
- Future work
 - State estimation

- Proof-of-concept shown
- Verified via simulation
- Future work
 - State estimation
 - Physical arm

Figure: Schunk LWA 4.6

Thank you for your attention

Questions?