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Introduction

Motivation

o A necessary front-end for robotic speech applications
o Speaker localization, speaker identification or speech recognition

e Focus on statistical model-based voice activity detectors
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@® Statistical Model-Based VADs

Gaussian distribution

Generalized Gaussian distribution
Rayleigh-Rice distribution
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Statistical Model-Based VADs

e A two hypothesis scenario:

Hp : speech absent == X =N
Hi : speech present == X =N+ S,

where X, N and S are the DFT coefficients of a K-point DFT of the
noisy speech, noise, and clean speech
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where X, N and S are the DFT coefficients of a K-point DFT of the
noisy speech, noise, and clean speech

e Model distributions p(X|Hp) and p(X|H;)

e Likelihood ratio
~ p(Xk|Hy)

A, = P2k
“ 7 p(Xe|Ho)

e Geometric mean
logA=— > logAc 217
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Gaussian distribution [Sohn et al., 1999]
e A DFT coefficient Sk = Sg i + jSi i
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SN NV EREESRVNDEE  Gaussian distribution

Gaussian distribution [Sohn et al., 1999]

e A DFT coefficient Sy = Sgr k + jSik
e Independent zero-mean gaussian random variables with variance of
s k/2

1 Sk
Spk) = ———— exp{ ——
P(Sr.k) oW p{ Nor

1 St
p(Sik) = VWi {_)\s,k
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Gaussian distribution [Sohn et al., 1999]
e A DFT coefficient Sy = Sgr k + jSik

e Independent zero-mean gaussian random variables with variance of

s k/2

e Joint distribution

p(Sk)
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SN NV EREESRVNDEE  Gaussian distribution

Gaussian distribution [Sohn et al., 1999]

e Two hypotheses

1 | X |?
Xi|Ho) = i
p(Xk|Ho) ok eXP{

1
p(Xk|H1) = Ok +rer) P {—/\—
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SN NV EREESRVNDEE  Gaussian distribution

Gaussian distribution [Sohn et al., 1999]

e Two hypotheses

1 | X
Xi|Ho) = AL
p(Xk|Ho) or eXP{ "

2
p(XiHr) = F;)p{—A'X—k'}

(>\n,k + )\s,k n,k + >\s,k
e Likelihood ratio for GD VAD

Xi|Hi) 1 ik
AGD — p( k = ex { },
k p(XilHo) ~ T+& “Pl1+¢

where £ = As k/An« is the a priori SNR, and v, = ]Xklz/)\,,,k is the
a posteriori SNR
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SIEHSEI NV EREERVNDEIN  Generalized Gaussian distribution

Generalized Gaussian distribution [Chang et al., 2004]

e Joint distribution
2.2 ”1}

veas (v S
p(Sk) = MskF—ZE:&v) " EXp {—Oéy(’/ [ \/ﬂ
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SIEHSEI NV EREERVNDEIN  Generalized Gaussian distribution

Generalized Gaussian distribution [Chang et al., 2004]
e Joint distribution

v

Slk

v2a?(v 5

_ e
U=\ Faw)

with

e Likelihood ration for GGD VAD

aGeD _ 1 V2 02 (Vs k)T (1/vn k) X{
S I NS LTV Rt

| X | + [ X i
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Statistical Model-Based VADs

Rayleigh-Rice distribution [Mumolo et al., 2003]

o Model the signal envelope |Xx| = /X3, + X?,
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Sz e clenibifen
Rayleigh-Rice distribution [Mumolo et al., 2003]

o Model the signal envelope |Xx| = /X3, + X?,

e Under hypothesis Hy we have Rayleigh distribution

2|X Xi|?
p(XilHo) = 22K g § I
)\n,k )\n,k
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o Model the signal envelope |Xx| = /X3, + X?,

e Under hypothesis Hy we have Rayleigh distribution

2|1X Xi|?
P(Xi|Ho) = 2l exp RCH
)\n,k )\n,k

e Under hypothesis H; we have Rice distribution

2|X Xi|? X |?
Pl ) = 2 o {—'A—k’ - &} ¥ {2,/@ X }
n,k n,k n,k
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Sz e clenibifen
Rayleigh-Rice distribution [Mumolo et al., 2003]

o Model the signal envelope |Xx| = /X3, + X?,

e Under hypothesis Hy we have Rayleigh distribution

2| Xk Xi|?
P Ho) = 24 p{——’A ’}
n,k

n,k

e Under hypothesis H; we have Rice distribution

2| X Xi|? X
px ) = A o § IHE g, lo 4 2y /€65 adly
Ank Ank Ank
e Likelihood ratio for RRD VAD

NP = exp {—&} o {%/ﬁ} @
F=R

Ivan Markovié¢ (University of Zagreb) VAD Comparison for Robot Applications September 5, 2012 10 / 25




Noise spetrum estimation
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e The three VADs require estimates of A, and &
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Noise spetrum estimation

e The three VADs require estimates of A, and &

® A\, is estimated using minima controlled recursive averaging
[Cohen, 2003]

)\n,k(/) = OdAn,k(/ - 1) + (1 - C“)|)<k(/)’2
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Noise spetrum estimation

e The three VADs require estimates of A, and &

® A\, is estimated using minima controlled recursive averaging
[Cohen, 2003]

Anic(1) = adpic(I = 1) + (1 = o) [ X (1)

e (y is calculated via decision directed a-priori SNR estimation
[Ephraim and Malah, 1984]

E(1) = (& (I — 1), k(1 = 1), 7(/))
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Experiments

e NOIZEUS [Hu and Loizou, 2007] speech corpus (sound-proof booth,
various noise added at different SNR levels,
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e NOIZEUS [Hu and Loizou, 2007] speech corpus (sound-proof booth,
various noise added at different SNR levels, . ..)

e We used car, babble, and white noise at three different SNR levels
(15, 10, 5dB)
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e NOIZEUS [Hu and Loizou, 2007] speech corpus (sound-proof booth,
various noise added at different SNR levels, . ..)

e We used car, babble, and white noise at three different SNR levels
(15, 10, 5dB)

e With 50% overlap we had 50000 examples, out of which 61.28%
contained speech
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Experiments

Receiver operating characteristics

e depict relationship between speech detection rate and false alarm rate
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Experiments
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Experiments

—=— GGD (AUC = 0.988)
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Experiments
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Discussion

e Execution time: GGD 9.70ms, RRD 0.37 ms, GD 0.21 ms
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Conclusion

Summary

Three different statistical model-based VADs: GGD, RRD, GD

Decision based on geometric mean of a likelihood ratio

Experimental analysis on NOIZEUS speech corpus

Evaluation done with ROC curves and the AUC score
RRD based VAD is the method of choice
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Future work

e Combine likelihood ratio with ‘weaker detectors’
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Conclusion

Future work

e Combine likelihood ratio with ‘weaker detectors’

e Utilize machine learning algorithms for decision making (SVM, Neural
networks, Boost)
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Conclusion

Future work

e Combine likelihood ratio with ‘weaker detectors’

e Utilize machine learning algorithms for decision making (SVM, Neural
networks, Boost)

e Perform input variable analysis
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Thank you for your attention

Questions?
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