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Motivation

• mixtures can smoothly represent complex distributions

• angular random variables ⇒ von Mises distribution
• captures well non-euclidean properties of angular data
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von Mises Distribution

• the pdf has the following form [von Mises, 1918]

p(x ;µ, κ) = 1
2πI0(κ)

exp [κ cos(x − µ)] ,

where µ is the mean direction, κ is the concentration parameter, I0(κ)
is the modified bessel function of the first kind and order zero
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Recursive Bayesian Tracking

• goal is to estimate p(xk |z1:k)

• cyclic procedure of prediction–update steps
• prediction via total probability theorem

p(xk |z1:k−1) =
∫

p(xk |xk−1)p(xk−1|z1:k−1) dxk−1

• update via Bayes’ rule

p(xk |z1:k) =
p(zk |xk)p(xk |z1:k−1)

p(zk |z1:k−1)
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Convolution

• prediction—convolution of von Mises distribution
[Mardia and Jupp, 1999]

h(x) = 1
2πI0(κi)I0(κj)

·I0
({
κ2i + κ2j + 2κiκj + cos(x − [µi + µj ])

}1/2)

• can be well approximated by

h(x) ≈ p(x ;µi + µj ,A−1(A(κi)A(κj)),

where A(κ) = I1(κ)
I0(κ)
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Convolution
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Product

• product of von Mises distribution [Murray and Morgenstern, 2010]

g(x) = 1
4π2I0(κi)I0(κj)

exp [κij cos(x − µij)] ,

where

µij = µi + atan2 [− sin(µi − µj), κi/κj + cos(µi − µj)] ,

κij =
√
κ2i + κ2j + 2κiκj cos(µi − µj),

• we approximate the product with

g(x) ≈ p(x ;µij , κij)
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Product
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von Mises Mixture

• state representation is a mixture

p(xk |z1:k) =
N∑

i=1
γi

1
2πI0(κi)

exp [κi cos(xk − µi)]

• motion model is a single von Mises

p(xk |xk−1) =
1

2πI0(κ)
exp [κ cos(xk − xk−1)]

• sensor model is a mixture

p(zk |xk) =
M∑

i=1
γi

1
2πI0(κi)

exp [κi cos(xk − zk,i)]
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Component Reduction

• we used a variant of West’s algorithm [West, 1993]

• Bhatacharyya coefficient as a distance metric

cB(p, q) =
∫ 2π

0

√
p(ξ)q(ξ) dξ

• for von Mises pdfs closed form result [Calderara et al., 2011]

cB (p(x ;µi , κi), p(x ;µj , κj)) =
I0 (κij/2)

{I0(κi)I0(κj)}1/2
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Entropy

• quadratic Rényi entropy

H2(x) = − log
∫

p2(x)dx

• for von Mises mixture closed form result

H2(x) = − log
N∑

i=1

N∑
j=1

γij
I0(κij)

2πI0(κi)I0(κj)
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Synthetic data

• two trajectories: continuous and turn-take, two filters: mixture and
particle

• simulated multimodal measurement model (von Mises mixture)
[Marković and Petrović, 2010]

• outlier probability was 0.3, while detection probability was 0.9
• measurements were corrupted with von Mises noise
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Synthetic data (continuous)
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Video (continuous)
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vm_continuous.avi
Media File (video/avi)



Synthetic data (turn-take)
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Video (turn-take)
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vm_turn_take.avi
Media File (video/avi)



Real-world experiments

• four omnidirectional microphones in a Y configuration

• Fs = 48 kHz, L = 1024, frame rate of approx. 47Hz
• two experiments: continuous from 0◦ − 360◦ and turn-take
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Real-world experiments (0–360)
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Real-world experiments (turn-take)
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Discussion

• we used 12 components for the mixture filter, and 360 particles

• 36 vs. 360 parameters for state representation
• mean time of an iteration was 81.2ms and 72.5ms for kernel and
regularized particle filter, respectively
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Conclusion

• theoretical steps of Bayesian estimation with von Mises mixture

• convolution, product, component reduction and entropy
• demonstrated on, but not limited to, the problem of speaker tracking
with a microphone array
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Thank you for your attention

Questions?
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Sensor model

azimuth [◦]
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Sensor model

azimuth [◦]
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