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Abstract— In this paper, we formulate and study the concept
of Lp-stability with respect to a set. This robustness concept
generalizes the standard Lp-stability notion towards control
systems designed to steer the system state into the vicinity
of a set rather than of a point. We focus on stable LTI
systems with the property that all eigenvalues with zero real
part are located in the origin. Employing the Real Jordan
Form, we devise a mechanism for computing upper bounds
associated with Lp-stability and Lp to Lp detectability with
respect to the equilibrium manifold. Notable examples of this
class of LTI systems arise from consensus control. In a self-
triggered realization of consensus control problems, each agent
broadcasts its state only when necessary in order to achieve
consensus. Bringing together Lp-stability with respect to the
consensus manifold and the small-gain theorem, we develop
self-triggering for single-integrator consensus with fixed and
switching network topology. In addition, we show that this
consensus problem is Input-to-State Stable with respect to the
consensus manifold. Finally, our results are corroborated by
numerical simulations.

I. INTRODUCTION

Consider a linear time-invariant (LTI) system

ẋ = Ax+Bω, y = Cx+Dω, (1)

where x ∈ Rnx denotes the state, ω ∈ Rnω denotes the
disturbance, and y ∈ Rny denotes the output of the system.
According to [1, Corollary 5.2], the following holds: if A is
Hurwitz, the system (1) is Lp-stable from ω to y for each
p ∈ [1,∞]. As a result, the class of asymptotically stable LTI
systems is commonplace and its Lp-stability is frequently
addressed and well established [2].

However, a notable class of decentralized control prob-
lems, called consensus problems, yields stable LTI closed-
loop systems (in the sense of [3, Theorem 6.3]) with the
property that all eigenvalues with zero real part are located
in the origin [4]. Consensus problems seek primarily for an
agreement; hence, the actual value of the consensus point
depends on the agents’ initial conditions. Another example
of this class of stable LTI systems is found in a quadrotor
control design [5, Section 3]. The kernel (or null space) of
the associated state matrix is nontrivial and spanned by the
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eigenvectors corresponding to the zero eigenvalue(s). In other
words, the kernel represents the set of equilibrium points.
Having that said, it is more appropriate to consider Lp-
stability with respect to this set than with respect to a specific
equilibrium point. More motivating examples for analyses of
stability with respect to sets can be found in [6]–[8]. For the
sake of brevity, we write ”w.r.t.” instead of ”with respect to”
in the remainder of the paper.

Self-triggered communication is a variant of the event-
triggered communication paradigm [9]–[12]. As the name
of the latter suggests, information exchange takes place
upon the occurrence of significant events, called triggering
events, related to stability or performance of control systems.
Utilizing previously exchanged information, self-triggering
predicts the occurrence of triggering events and, based on
such predictions, induces an exchange of up-to-date infor-
mation. Self-triggering aims at reducing requirements posed
on sensors and processors in embedded systems.

Works somewhat similar to the one presented herein are
reported in [7] and [8]. While [7] and [8] are interested
in Input-to-State Stability (ISS), this paper is interested in
input-output Lp-stability. Works regarding event- and self-
triggering in consensus control are found in [10] and [12],
respectively. However, [10] and [12] do not take distur-
bances nor switching topologies into account. In addition,
the authors in [13] tailor several ternary controllers for self-
triggered practical consensus and show that those controllers
posses some desirable features (e.g., no global information
on graph topology is needed, robustness with respect to
skews in the agents local clocks, delays, and quantization).
As opposed to [13], our methodology, as well as the method-
ologies in [10] and [12], aims at devising self-triggering for
a variety of existing control schemes that are designed on
the premise of continuous information flows.

The contributions of this paper are fourfold: a) the formu-
lation of Lp-stability and Lp to Lp detectability w.r.t. a set; b)
the design of a computing mechanism for constants and gains
pertaining to these stability notions; c) the design of stabiliz-
ing communication instants for single-integrator consensus
problems with fixed and switching network topologies; d)
the consideration of disturbances as well as directed and
unbalanced topologies. We point out that [10] considers
balanced while [12] and [13] consider undirected topologies.

II. MATHEMATICAL PRELIMINARIES

A. Notation

To shorten the notation, we use (x, y) := [x> y>]>. The
dimension of a vector x is denoted nx. In this paper, ‖ · ‖
refers to the Euclidean norm of a vector. If the argument



of ‖ · ‖ is a matrix, then it denotes the induced matrix 2-
norm. The set of all eigenvalues of a matrix A is denoted
λ(A). The kernel of a matrix A is denoted Ker(A). Given
x ∈ Rn, we define x = (|x1|, |x2|, . . . , |xn|), where | · |
denotes the absolute value function. When the argument of |·|
is a set, then it denotes the cardinality of the set. Given x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn, the partial
order � is given as x � y ⇐⇒ xi ≤ yi, ∀i ∈ {1, · · · , n}.
An n-dimensional vector with all entries 0 (respectively, 1)
is denoted 0n (respectively, 1n). Similarly, an n×m matrix
with all zero entries is 0n×m. Likewise, the n × n identity
matrix is denoted In. The set A+

n denotes the subset of all
n × n matrices that are symmetric and have nonnegative
entries. In addition, let Rn+ denote the nonnegative orthant.
We use

‖f [a, b]‖p,B :=

(∫
[a,b]

‖f(s)‖pBds

)1/p

, (2)

where ‖f(s)‖B := infb∈B ‖f(s)−b‖, to denote the Lp-norm
w.r.t. a set B ⊂ Rn of a Lebesgue measurable function
f : R → Rn restricted to the interval [a, b] ⊂ R. Lastly,
when B = 0n, we write ‖f [a, b]‖p since this represents the
standard Lp-norm.
B. Graph Theory

A directed graph is a pair G = (V, E) where V =
{v1, . . . , vN} is a nonempty set of nodes (or vertices) with
unique ID numbers, and E ⊆ V × V is the set of the
corresponding edges. When the edge (i, j) belongs to E , it
means that there is an information flow from the node i to the
node j. We do not allow self-loops, i.e., edges that connect
a vertex to itself. The set of neighbors of the node vi is
Ni = {j ∈ V : (j, i) ∈ E} which is all nodes that the node
vi can obtain information from. A directed tree is a directed
graph in which every node has exactly one parent except for
one node. A subgraph Gs = (Vs, Es) of G is a graph such
that Vs ⊆ V and Es ⊆ E ∩ (Vs × Vs). A directed spanning
tree Gs of G is a subgraph of G such that Gs is a directed
tree and Vs = V . A graph G contains a directed spanning
tree if a directed spanning tree is a subgraph of G.

Given a graph G, the graph Laplacian matrix L ∈ R|V|×|V|
is defined as L = [lij ], where lij equals −1 for j ∈ Ni, |Ni|
for j = i, and 0 otherwise.
C. Stability Notions

Consider a nonlinear hybrid (or impulsive) system [6]

Σ


ẋ = f(x, ω)

y = g(x, ω)

}
t ∈

⋃
i∈N0

[ti, ti+1),

x(t+) = h(x(t)) t ∈ T ,
(3)

where x, y and ω are defined as in (1). We assume enough
regularity on f and h to guarantee existence of the solutions
given by right-continuous functions t 7→ x(t) on [t0,∞)
starting from x0 at t = t0. Jumps of the state x (or impulses)
occur at each t ∈ T := {ti : i ∈ N}. The value of the state
after the jump is given by x(t+) = limt′↘t x(t′) for each
t ∈ T .
In the following definitions, we use the set

By := {y ∈ Rny |∃b ∈ B such that y = g(b,0nω )}, (4)

where B ⊆ Rnx .
Definition 1: (global exponential stability w.r.t. a set) For

ω ≡ 0nω , the system Σ is Globally Exponentially Stable
(GES) w.r.t. a set B if there exist k, l ≥ 0 such that
‖x(t)‖B ≤ k exp(−l(t − t0))‖x(t0)‖B for all t ≥ t0 and
for any x(t0).

Definition 2: (Input-to-State Stability w.r.t. a set) The
system Σ is Input-to-State Stable (ISS) w.r.t. a set B if there
exist a class-KL function β and a class-K∞ function γ such
that, for any x(t0) and every input ω, the corresponding
solution x(t) satisfies ‖x(t)‖B ≤ β(‖x(t0)‖B, t − t0) +
γ(‖ω[t0, t]‖∞).

Definition 3: (Lp-stability w.r.t. a set) Let p ∈ [1,∞]. The
system Σ is Lp-stable from ω to y w.r.t. a set B with gain
γ ≥ 0 if there exists K ≥ 0 such that ‖y[t0, t]‖p,By ≤
K‖x(t0)‖B + γ‖ω[t0, t]‖p for any t ≥ t0, x(t0) and ω.

Definition 4: (Lp to Lp detectability w.r.t. a set) Let p ∈
[1,∞]. The state x of Σ is Lp to Lp detectable from (ω, y)
to x w.r.t. a set B with gain γd ≥ 0 if there exists Kd ≥ 0
such that ‖x[t0, t]‖p,B ≤ Kd‖x(t0)‖B + γd‖y[t0, t]‖p,By +
γd‖ω[t0, t]‖p for any t ≥ t0, x(t0) and ω.

Definitions 1 and 2 are motivated by [1], [7] and [8], while
Definitions 3 and 4 are motivated by [14]. Notice that K, γ,
Kd and γd in Definitions 3 and 4 are not unique.

D. Switched Systems and Average Dwell-Time
Consider a family of systems (3) indexed by the param-

eter ρ taking values in a set P = {1, 2, . . . ,m}. Let us
define a right-continuous and piecewise constant function
σ : [t0,∞) → P called a switching signal. The role of σ
is to specify which system is active at any time t ≥ t0. The
resulting switched system investigated herein is given by

Σσ


ẋ = fσ(x, ω)

y = g(x, ω)

}
t ∈

⋃
i∈N0

[ti, ti+1),

x(t+) = hσ(x(t)) t ∈ T .
(5)

For each switching signal σ and each t ≥ t0, let Nσ(t, t0)
denote the number of discontinuities, called switching times,
of σ on the open interval (t0, t). We say that σ has average
dwell-time τa [15] if there exist two positive numbers N0

and τa such that Nσ(t, t0) ≤ N0 + t−t0
τa

for every t ≥ t0.
In this paper, different values of σ correspond to different
topologies L, while state jump instants ti’s indicate when an
exchange of information takes place.

III. PROBLEM STATEMENT AND ASSUMPTIONS

Consider an LTI system (1) satisfying the following:
Assumption 1: All eigenvalues of A have nonpositive real

parts. In addition, the eigenvalues with zero real part are
located in the origin.
From [3, Definition B.14] we deduce the following. The
algebraic multiplicity of A, denoted A , equals the multiplicity
of zero as a root of the characteristic polynomial. The dimen-
sion of the kernel of A equals the geometric multiplicity of
the zero eigenvalue and is denoted G .

Assumption 2: A is such that A = G .
Now, take B to be the kernel of A, i.e.,

B = Ker(A). (6)



Apparently, ‖ · ‖B measures how close the system state x is
from the nearest equilibrium point, i.e., from the equilibrium
manifold. When applied to single-integrator consensus con-
trol, ‖·‖B measures how close the agents are from achieving
consensus, i.e., from the consensus manifold. Let us now
state the problems solved in Sections IV and V, respectively.

Problem 1: Provided that an LTI system (1) satisfies As-
sumptions 1 and 2, establish Lp-stability from ω to y w.r.t.
B given by (6) in the sense of Definition 3. In addition,
develop a mechanism to compute a suitable constant K and
gain γ. Under the same assumptions, establish Lp to Lp
detectability of x from (ω, y) w.r.t. B given by (6) in the
sense of Definition 4. In addition, develop a mechanism to
compute a suitable constant Kd and gain γd.

Problem 2: Accommodate the small-gain theorem to-
wards Lp-stability w.r.t. a set, and develop self-triggering
for the single-integrator consensus problem with fixed and
time-varying communication topologies.

Single-integrator consensus yields closed-loop dynamics
that satisfy Assumptions 1 and 2. However, our framework
is not constrained only to such a specific problem.

IV. Lp-STABILITY WITH RESPECT TO SET

The approach presented in this section originates from the
following observations. Notice that ‖·‖B in (2) is a seminorm
when B 6= 0nx . Thus, ‖ · ‖B does not separate points but,
rather, equivalence classes when B is not a singleton. In case
B is a subspace of Rnx , ‖ · ‖B is a norm for the normed
space Rnx/B. The space Rnx/B is called the quotient space.
Due to (6), the set B considered herein is a closed subspace
of Rnx . Consequently, B is a manifold. In quotient spaces
defined in this manner, the following holds:

‖x+ b‖B = ‖x‖B, (7)

for all b ∈ B and x ∈ Rnx . In addition, when By is obtained
from B via a linear mapping C, the set By is a subspace of
Rny and we can restrict ourselves to Rny/By .

A. Real Jordan Form

Let us introduce a substitution (i.e., change of coordinates)

z = Tx, (8)

where T is an invertible matrix (i.e., diffeomorphism), such
that (1) becomes:

ż = TAT−1︸ ︷︷ ︸
AD

z + TBω, y = CT−1z +Dω, (9)

where
AD =


Jλ1 0 ··· 0

0 Jλ2 ··· 0

...
...

. . .
...

0 0 ··· J0

 , (10)

and Jλi ’s are elementary Jordan blocks of the Real Jordan
Form (refer to [16, Section 1.8]). Elementary blocks Jλi ’s
are either of the form

λi 1 0 ... 0
0 λi 1 ... 0

...
...

. . . . . .
...

0 ... ... λi 1
0 ... ... 0 λi

 ,

for a real eigenvalue λi ∈ λ(A), or of the form
F I2 02×2 ... 02×2

02×2 F I2 ... 02×2

...
...

. . . . . . 02×2

02×2 ... ... F I2
02×2 ... ... 02×2 F

 ,
where F =

[
a −b
b a

]
, for a complex eigenvalue λi = a+ jb ∈

λ(A). Notice that nz = nx.
Recall that the eigenvectors corresponding to complex

conjugate eigenvalues are themselves complex conjugate so
that the potential calculations involve working in complex
spaces. The Real Jordan Form allows us to stay in the real
number system by properly choosing a basis of generalized
eigenvectors of A. An algorithm for how to choose such
a basis is provided in, for example, [16, Section 1.8]. The
generalized eigenvectors, that form this basis, have real
entries and constitute columns of T−1. Likewise, the entries
of T are real. Consequently, TAT−1, TB and CT−1 in (9)
are matrices over R. In addition, notice that B is spanned by
the last A columns of T−1. Since T−1 is invertible, the first
nx − A columns of T−1 span a complementary space of B,
denoted Bc.
B. Reduced System

From the form of AD given by (10), we infer that the
first nx − A and the last A components of z are decoupled.
Furthermore, the last A components of z are in the null space
of AD, i.e., their values are irrelevant. Therefore, we prune
the last A components of z, obtaining zr, and reduce (9) to

żr = Arzr +Brω, yr = Crzr +Drω, (11)

where Ar is obtained from AD by removing the last A rows
and columns of AD (those contain all zeros anyway), Br is
obtained from TB by removing the last A rows of TB, and
Cr is obtained from CT−1 by removing the last A columns
of CT−1. Even though D from (9) remains unaltered, we
cast it as Dr in order to retain uniform nomenclature. Notice
that the mapping from z into zr is not a diffeomorphism, i.e.,
(9) and (11) are not ”equivalent”. This can be seen from the
fact that yr carries less information than y, i.e.,

y = yr + by, (12)

where by ∈ By and By is given by (4). The term by in (12) is
related to the loss of information due to reducing TB to Br
and CT−1 to Cr. Basically, the nonzero terms B′ω and C ′z′,
where B′ denotes the last A rows of TB, C ′ denotes the last
A columns of CT−1 and z′ denotes the last A components
of z, are pruned from the system (9) while obtaining (11).
The contributions of B′ω and C ′z′ towards y lie in By and
are denoted by .

Notice that Ar is Hurwitz due to its construction. Hence,
(11) is Lp-stable from ω to yr for each p ∈ [1,∞]. Using
[1, Corollary 5.2 & Theorem 5.4], one obtains some Kr and
γr for the standard Lp-stability of (11).

C. Establishing Lp-stability w.r.t. B
What we have so far is the following:

‖yr[t0, t]‖p ≤ Kr‖zr(t0)‖+ γr‖ω[t0, t]‖p,



Fig. 1. A simple illustration of an angle between complementary spaces
and how it relates to the norms used in our computations.

for any t ≥ t0, zr(t0) and ω. Using the analogue of (7) in
the quotient space Rny/By , from (12) we infer that ‖y‖By ≤
‖yr‖. Therefore,

‖y[t0, t]‖p,By ≤ Kr‖zr(t0)‖+ γr‖ω[t0, t]‖p,

for any t ≥ t0, zt(t0) and ω. Utilizing results from [17], we
proceed as follows:
‖y[t0, t]‖p,By ≤ Kr‖zr(t0)‖+ γr‖ω[t0, t]‖p =

= Kr‖(zr(t0),0A)‖+ γr‖ω[t0, t]‖p =

= Kr‖Txr(t0)‖+ γr‖ω[t0, t]‖p ≤
≤ Kr‖T‖‖xr(t0)‖+ γr‖ω[t0, t]‖p ≤
≤ Kr‖T‖‖P‖‖x(t0)‖B + γr‖ω[t0, t]‖p, (13)

where xr(t0) is the oblique projection of x(t0) onto Bc along
(or parallel to) B, P is the oblique projector onto Bc along
B. In general, the following holds ‖P‖ = 1

sin θmin
, where

θmin ∈ [0, π/2] satisfies
cos θ = max

u∈B,v∈Bc
‖u‖=‖v‖=1

v>u,

and represents the minimal angle between B and Bc (consult
[17] for more details). In our settings, θmin 6= 0 since B and
Bc are complementary spaces. Consequently, ‖P‖ is well
defined for our problem of interest. A simple 2D illustration
of the relation among θ, ‖xr(t0)‖ and ‖x(t0)‖B is provided
in Figure 1. Obviously, ‖xr(t0)‖ = ‖x(t0)‖B

sin θ .
Theorem 1: If an LTI system (1) satisfies Assumptions 1

and 2, then it is Lp-stable from ω to y w.r.t. B given by (6)
for any p ∈ [1,∞] in the sense of Definition 3. A suitable
choice for K and γ in Definition 3 is as follows:

K = Kr‖T‖‖P‖, γ = γr, (14)

where Kr and γr pertain to Lp-stability of (11) from ω to
yr.

D. Establishing Lp to Lp Detectability w.r.t. B
Let us choose C = Inx and D = 0nx×nω in (1). In light

of Theorem 1, one obtains
‖x[t0, t]‖p,B ≤ Kd‖x(t0)‖B + γd‖ω[t0, t]‖p, (15)

where Kd and γd are obtained in the same manner as K and
γ in (14), respectively. Now, we add the nonnegative element
γd‖y[t0, t]‖p,By to the right hand side of (15) and obtain

‖x[t0, t]‖p,B ≤ Kd‖x(t0)‖B + γd‖y[t0, t]‖p,By+

+ γd‖ω[t0, t]‖p. (16)

According to Definition 4, the state x of (1) is Lp to Lp
detectable from (ω, y) w.r.t. B given by (6) for any p ∈
[1,∞]. Notice that Problem 1 is solved now.

Next, we provide a result utilized in Section V.
Proposition 1: Lp-stability from ω to y w.r.t. B and Lp

to Lp detectability w.r.t. B imply Lp-stability from ω to x
w.r.t. B.

V. SINGLE-INTEGRATOR CONSENSUS

Consider N identical agents given by
ξ̇i = ui, ζi = ξi, (17)

where ξi, ζi, ui ∈ Rnξ are the state, output and control input,
respectively, of the ith agent, i ∈ {1, 2, . . . , N}. Motivated
by [4, Chapter 2], we consider the following decentralized
control law

ui = −
∑
j∈Ni

(ζi − ζj) + ωi. (18)

Next, we define the following stack vectors x :=
(ξ1, ξ2, . . . , ξN ), y := (ζ1, ζ2, . . . , ζN ), and ω :=
(ω1, ω2, . . . , ωN ). Given the control law (18), the closed-
loop dynamic equation (17) becomes

ẋ = −(L⊗ Inξ)x+ ω, y = x, (19)

where ⊗ denotes the Kronecker product.
Definition 5: Suppose we have a system of N agents

given by (17). We say that the agents achieve consensus if
‖yi − yj‖ → 0 as t→∞ for all i, j ∈ {1, 2, . . . , N}.

Let us now assume that G contains a directed spanning
tree. From [4, Lemma 2.4.], we infer that −L satisfies
Assumptions 1 and 2. Furthermore, −L has exactly one zero
eigenvalue and the associated eigenvector is 1nξ . From [18,
Theorem 13.12.], we infer that algebraic multiplicities of
the eigenvalues of −(L ⊗ Inξ) are the respective algebraic
multiplicities of the eigenvalues of −L multiplied by nξ. In
other words, A = nξ for system (19). From [18, Corollary
13.11.], we infer that G = nξ for system (19). Thus,
−(L⊗Inξ) satisfies Assumptions 1 and 2 as well. In addition,
from the second part of [18, Theorem 13.12.] we conclude
that Ker(−(L ⊗ Inξ)) is spanned by nξ vectors {1nξ ⊗
(1, 0, . . . , 0),1nξ ⊗ (0, 1, 0, . . . , 0), . . . ,1nξ ⊗ (0, . . . , 1)} of
dimension nx.

Since we do not consider continuous feedback in (18), the
control signal becomes

ui = −
∑
j∈Ni

(ζ̂i − ζ̂j) + ωi, (20)

where ζ̂j is the most recently transmitted value of the output
of the jth agent. Let Ti := {tji : j ∈ N} denote the set of
broadcasting time instants of the ith agent and T := ∪Ni=1Ti.
Next, we introduce the output error vector
e = (e1, . . . , eN ) := (ζ̂1 − ζ1, . . . , ζ̂N − ζN ) = ŷ − y.

The above expression uses ŷ := (ζ̂1, ζ̂2, . . . , ζ̂N ). Taking e
into account, the closed-loop dynamics (19) become

ẋ = −(L⊗ Inξ)x− (L⊗ Inξ)e+ ω. (21)

Since ˙̂y = 0, the corresponding output error dynamics are
ė = −ẋ. (22)



In what follows, we design the sets of broadcasting (i.e.,
communication) instants Ti, i ∈ {1, 2, . . . , N}, such that the
agents reach consensus in the sense of Definition 5.

A. Designing Broadcasting Instants

Based on the underlying communication topology and
information exchanged in the most recent broadcasting in-
stant, our self-triggering mechanism computes when the next
exchange of information should take place in order to reach
consensus. The time elapsed before the next broadcasting
instant is denoted τ . The impact of broadcasting agents’
states is as follows: if the ith agent broadcasts at time t,
the corresponding components of e reset to zero while other
components remain unchanged, i.e.,

e+i (t) = 0nζ , e+j (t) = ej(t), (23)

for all j ∈ {1, . . . , N} such that j 6= i. In what follows, we
assume that broadcasting instants of the agents coincide for
the sake of simplicity. Thus, τ represents the interbroadcast-
ing interval of each agent, i.e., τ is the same for all agents.
If one is concerned with message collisions or synchronicity
of the broadcasting instants, the scheduling protocols from
[19] should be employed.

Now, let us interconnect dynamics (21) and (22) in order
to employ the small-gain theorem [1]. To this end, we upper
bound the output error dynamics (22) as follows:

¯̇e = (L⊗ Inξ)x+ (L⊗ Inξ)e− ω � A∗ē+ ỹ(x, ω), (24)

where A∗ = [a∗ij ] := max{|c∗ij |, |c∗ji|}, (25)

ỹ(x, ω) := (L⊗ Inξ)x− ω. (26)

In (25), we use L ⊗ Inξ = [c∗ij ]. Notice that A∗ ∈ A+
ne

and ỹ : Rnx × Rnω → Rne+ is a continuous function. With
this choice of A∗ and ỹ, the upper bound (24) holds for all
(x, e, ω) ∈ Rnx × Rne × Rnω and all t ∈ R.

Theorem 2: Suppose that τ ∈ (0, τ∗), where τ∗ := ln(2)
‖A∗‖ .

Then, the output error system (22) is Lp-stable from ỹ to e
for any p ∈ [1,∞] with a gain

γe =
exp(‖A∗‖τ)− 1

‖A∗‖(2− exp(‖A∗‖τ))
. (27)

Next, take (ω, e) to be the input and ỹ, obtained in
Theorem 2, to be the output of the dynamics (21). We point
out that ỹ is an auxiliary signal used to interconnect (21) and
(22), but does not exist physically. Notice that ỹ is not linear
in x and ω as required in Theorem 1.

Proposition 2: Assume that system (21) with the input
(ω, e) and output y† := (L ⊗ Inξ)x − ω is Lp-stable w.r.t
B with some constant K and gain γ. Then, the system (21)
with the input (ω, e) and output ỹ given by (26) is Lp-stable
w.r.t B with the same constant K and gain γ.
Now, due to Theorem 1 and Proposition 2, this LTI system
is Lp-stable w.r.t. B = Ker(−(L ⊗ Inξ)) from (ω, e) to ỹ
for any p ∈ [1,∞]. A corresponding gain, obtained via (14)
for example, is denoted γ. Notice that systems (21) and (22)
are interconnected as depicted in Figure 2.

Theorem 3: If the interbroadcasting interval τ in (27) is
such that γγe < 1, then the single-integrator consensus

Fig. 2. Interconnection of the nominal and output error dynamics. Jumps
of e occur when t ∈ T .

problem is Lp-stable from ω to (x, e) w.r.t. (B,0ne) for given
p ∈ [1,∞].

Remark 1: Notice that γe(τ) in (27) is a monotonically
increasing function of τ ∈ [0, τ∗). In addition, notice that
γe(0) = 0. Due to Theorem 1, we know that γ < ∞.
Since our goal is to design τ such that γγe(τ) < 1, we first
find τ ′ such that γγe(τ ′) = 1, and then compute τ = κτ ′,
where κ ∈ (0, 1). Due to monotonicity of γe(τ), the obtained
τ ′ is strictly positive; hence, τ = κτ ′ is strictly positive.
Consequently, the unwanted Zeno behavior [6] is avoided.

B. Switching Communication Topologies

Since the number of agents is N , there exists only a
finite number, say m, of topologies that contain a directed
spanning tree. Herein, such topologies are called admissible
topologies. From the discussion below Definition 5, we
conclude that Ker(−(L⊗Inξ)) is time invariant even though
the topologies may be time-varying. Now, one can consider
each of m associated reduced systems (11) and conclude that
these individual systems are GES uniformly in t0. Applying
the methodology of [19, Section V] to these individual
systems and merging the obtained results with the results
derived herein, we obtain the following:

Theorem 4: Consider the family of m admissible topolo-
gies with the self-triggered broadcasting from Subsection V-
A implemented. Then there exists a constant τa such that
single-integrator consensus problems are ISS from ω to (x, e)
w.r.t. (B,0ne) for every switching signal σ with average
dwell-time τa.

In a sense, self-triggering combines attributes of both the
time- and event-triggered control paradigm [9]. As suggested
by [9], combinations of these two paradigms are often benefi-
cial. Basically, upon arrival of up-to-date information, control
signals are updated, the subsequent broadcasting instant is
computed in order to preclude destabilizing events (a feature
of event-triggering), and the update mechanism commits to
the computed subsequent broadcasting instants (a feature
of time-triggering). Since papers on self-triggering typically
assume state feedback, the subsequent broadcasting instant is
routinely computed based on up-to-date state measurements
[12], [13]. This type of self-triggering is termed state-
triggering. However, the subsequent broadcasting instant can
be determined upon both the state and input information [20]
or upon promises made by agents [21] as well. Even though
the latter update scheme is labeled team-triggering, both of
these update schemes are variants of self-triggering.

In the self-triggered update scheme presented herein, the
computation of τ via Theorem 3 precludes the small-gain
condition from being compromised (refer to [11] for more
about this triggering event) and the update scheme commits
to the computed τ . Because this paper investigates LTI



agents (17) and control laws (18), the upper bound (24)
holds globally. Consequently, γe in (27) does not depend on
(x, e, ω) for any t ∈ R. Hence, in case the topology is fixed,
the rule τ = κτ ′ yields periodic broadcasting. Consideration
of nonlinear (or even time-varying) agents or control laws
would yield state-triggering, i.e., a state-dependent τ , for a
fixed topology (refer to [11]). However, this consideration
also entails calculation of constants and gains related to Lp-
stability w.r.t. sets of nonlinear (i.e., time-varying) systems
which has yet to be devised. A pursuit for a compelling
nonlinear example is high on our research agenda.

Due to the commitment of self-triggering to a computed τ ,
agents know when they should ”hear” from their neighbors.
The agents exploit this knowledge to detect changes in
the communication topology, induce a topology discovery
algorithm [19], and compute the respective τ . Apparently,
τ adapts to changes in topology based on the (absence of)
state information from neighbors as demonstrated in Section
VI. As a result, for LTI settings, one could label our self-
triggered control scheme as topology-triggering.

VI. NUMERICAL RESULTS

Consider five agents given by (17) and choose nξ = 1. In
addition, consider the following two topologies

L1 =

[ 2 − 1 0 − 1 0
0 1 − 1 0 0
0 0 1 0 − 1

− 1 − 1 0 2 0
0 0 − 1 − 1 2

]
, L2 =

[ 1 − 1 0 0 0
0 1 − 1 0 0
0 0 1 0 − 1

− 1 0 0 1 0
0 0 − 1 − 1 2

]
.

Let us compute τ1 for the topology given by L1. First, we
compute T1 in (8) obtaining

T1 =

[ 1.0925 2.052 − 0.185 0.25 1
− 1.6624 0.5623 0.3247 0.25 1
− 0.2151 − 1.3071 − 0.5698 − 0.5 1

1.0925 2.052 − 0.185 − 0.5 1
1 0 1 1 1

]
.

The corresponding matrix AD,1 is given by

AD,1 =

[− 1.1226 0.7449 0 0 0
− 0.7449 − 1.1226 0 0 0

0 0 − 2.7549 0 0
0 0 0 − 3 0
0 0 0 0 0

]
.

Let us consider the case p = 2 and apply [1, Theorem 5.4] to
the associated reduced system (11). We obtain a gain γ1 =
3.241 from (ω, e) to ỹ w.r.t. B. According to (25), we obtain

A∗1 =

[
2 1 0 1 0
1 1 1 1 0
0 1 1 0 1
1 1 0 2 1
0 0 1 1 2

]
, ‖A∗1‖ = 4.1578.

The corresponding γe,1 as a function of τ1 is given by (27).
By requiring that γ1γe,1 < 1, we obtain τ1 = 0.107 s which
corresponds to the broadcasting frequency of 9.33 Hz for
each agent. By repeating the same steps for L2, we obtain
γ2 = 2.845, ‖A∗2‖ = 3.3028 and τ2 = 0.13 s which
corresponds to the broadcasting frequency of 7.68 Hz for
each agent.

In order to verify Theorem 4, we toggle between topolo-
gies L1 and L2. Numerical results for an illustrative scenario
are provided in Figure 3. In this scenario, we choose ωi(t) =
N (0, 1)t[0,10) + N (0, 6)t[10,20) + 0t[20,30], i ∈ {1, . . . , N},
where tI is the indicator function on an interval I. In other
words, tI = t when t ∈ I and zero otherwise. In addition,
N (a, b) denotes the normal distribution with mean a and
standard deviation b.
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Fig. 3. States of the agents. Magenta dots indicate switching instants.
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