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Abstract— In this paper, we investigate a decentralized out-
put synchronization problem of heterogeneous linear systems.
Motivated by recent results in the literature, we develop a
self-triggered output broadcasting policy for the interconnected
systems. In other words, each system broadcasts its outputs
only when necessary in order to achieve output synchronization.
Consequently, the control signal of each system is updated based
on currently available (but outdated) information received from
the neighbors. These broadcasting time instants adapt to the
current communication topology. For a fixed topology, our
broadcasting policy yields global exponential output synchro-
nization, and Lp-stable output synchronization in the presence
of disturbances. Employing a converse Lyapunov theorem for
impulsive systems, we provide an average dwell-time condition
that yields disturbance-to-state stable output synchronization in
case of switching topology. The proposed approach is applicable
to directed and unbalanced communication topologies. Finally,
our results are corroborated by numerical simulations.

I. INTRODUCTION

Recent years have witnessed an increasing interest in
decentralized control of multi-agent systems [1]–[5]. The
problem of synchronizing agents’ outputs is a typical prob-
lem solved in a decentralized fashion [2], [4]. The goal
of output synchronization is to achieve a desired collective
behavior of multi-agent systems. Examples are formation
control, flocking, consensus control, etc.

Information exchange among neighbors is instrumental
for coordination [1]–[5]. According to [6], two models
of wireless networks supporting decentralized control are
typically considered in the literature. The first model is the
radio network model that buys into the worst-case thinking –
concurrent transmissions cancel each other because of inter-
ference, and potential message collision cannot be detected
at a receiver’s end. The second model is the local model
that abstracts away media access issues allowing the agents
to concurrently communicate with all neighbors. Clearly, the
local model is too optimistic. In order to reconcile these two
models, we partition the set of agents into subsets as follows:
when all agents in a subset broadcast simultaneously, the
wireless network is collision free. Basically, we do not allow
agents, that belong to different partitions, to broadcast at
the same time due to possibility of message collisions. In
comparison with asynchronous wireless networks, benefits
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of synchronous wireless networks include a constant bit
rate with increased Committed Information Rate (CIR) and
Quality of Service (QoS), increased tolerance to interference,
and low and predictable latency.

Synchronous wireless is an example of the time-triggered
communication paradigm [7]. This paradigm excels with
respect to predictability, composability, error detection and
error containment. Another widely used paradigm is the
event-triggered communication paradigm which excels with
respect to flexibility and resource efficiency. As [7] suggests,
a combination of the time- and event-triggered paradigm
is often beneficial. In this paper, we take advantage of
predictability in synchronous wireless networks to detect
possible changes in the communication topology. When a
receiver does not receive a message in an allotted time in-
terval, we say that an event has occurred and a decentralized
topology discovery algorithm is triggered [8], [9].

In order to determine when agents in different partitions
should broadcast, we utilize self-triggered feedback devel-
oped in [10]. Essentially, based on the current topology
(captured in the Laplacian matrix) and dynamics of the
agents, each agent computes when to broadcast its outputs
such that output synchronization is achieved. In other words,
the communication between agents is neither continuous nor
periodic as in [1], [2] and [5], but adapts to changes in the
topology. The motivation behind self-triggering is to reduce
communication and computational load without compromis-
ing stability. In addition, valid self-triggered broadcasting
policies must guarantee that broadcasting instants do not
accumulate in finite time which is known as Zeno behav-
ior [11], [12]. Consequently, self-triggering eliminates the
problem of arbitrary fast switching (e.g., [11], [13]) since
changes in the communication topology between broadcast-
ing instants do not impact stability.

The contributions of this paper are fourfold: a) the design
of broadcasting instants for each partition of agents yielding
stability for a fixed topology; b) consideration of directed
and unbalanced topologies; c) the formulation of an aver-
age dwell-time condition leading to stability with switching
topology; and d) stability analyses that take into account
disturbances. We point out that [4] considers balanced and
fixed topologies while [5] considers undirected and fixed
topologies.

The remainder of the paper is organized as follows.
Section II presents the notation, concepts from graph theory
and stability notions utilized in this paper. In addition, the
notion of average dwell-time for switched systems is pre-
sented. Section III formulates the problem of decentralized



output synchronization with intermittent communication and
switching topology. The methodology brought together to
solve the problem is presented in Section IV. The case of
switching topology is investigated in Section V. The pro-
posed methodology is verified using numerical simulations in
Section VI. Due to space limitations, our results are provided
without proofs and the conclusion section is omitted.

II. MATHEMATICAL PRELIMINARIES

A. Notation
To shorten the notation, we use (x, y) := [x> y>]>. The

dimension of a vector x is denoted nx. We use ‖f [a, b]‖p :=(∫
[a,b]
‖f(s)‖pds

)1/p
to denote the Lp norm of a Lebesgue

measurable function f on [a, b] ⊂ R. In this paper, ‖ · ‖
refers to the Euclidean norm of a vector. If the argument of
‖ · ‖ is a matrix, then it denotes the induced matrix 2-norm.
Given x ∈ Rn, we define x = (|x1|, |x2|, . . . , |xn|), where
| · | denotes the absolute value function. When the argument
of | · | is a set, then it denotes the cardinality of the set.
Given x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn,
the partial order � is given as x � y ⇐⇒ xi ≤ yi,∀i ∈
{1, · · · , n}. An n-dimensional vector with all entries 0 is
denoted 0n. The set A+

n denotes the subset of all n × n
matrices that are symmetric and have nonnegative entries.
Finally, let Rn+ denote the nonnegative orthant.

B. Graph Theory
A directed graph, or digraph, is a pair G = (V, E) where

V = {v1, . . . , vN} is a nonempty set of nodes (or vertices)
with unique ID numbers, and E ⊂ V × V is the set of the
corresponding edges. When the edge (i, j) belongs to E , it
means that there is an information flow from the node i
to the node j. We do not allow self-loops, i.e., edges that
connect a vertex to itself. When both (i, j) and (j, i) belong
to E , we say that the link between i and j is bidirectional.
Otherwise, the link between i and j is unidirectional. The
set of neighbors of the node vi is Ni = {j ∈ V : (j, i) ∈ E}
which is all nodes that the node vi can obtain information
from. A path in a graph is a sequence of vertices such that
from each of its vertices there is an edge to the next vertex in
the sequence. The distance between two vertices in a graph
is the number of edges in a shortest path connecting them.
The greatest distance between any pair of vertices is called
the diameter of a graph and is denoted diam(G). A cycle
in G is a directed path with distinct nodes except for the
starting and ending node. An inclusive cycle for an edge is
a cycle that contains the edge on its path.

Given a graph G, the graph Laplacian matrix L ∈ R|V|×|V|
is defined as L = [lij ], where lij equals −1 for j ∈ Ni, |Ni|
for j = i, and 0 otherwise.

C. Stability Notions
Consider a hybrid (or impulsive) system

Σ


ẋ = f(x, ω)

y = g(x, ω)

}
t ∈

⋃
i∈N0

[ti, ti+1),

x(t+) = h(x(t)) t ∈ T ,

(1)

with the state x ∈ Rnx , output y ∈ Rny and input ω ∈
Rnω . We assume enough regularity on f and h to guarantee
existence of the solutions given by right-continuous functions
t 7→ x(t) on [t0,∞) starting from x0 at t = t0. Jumps of
the state x occur at each t ∈ T := {ti : i ∈ N}. The value
of the state after the jump is given by x(t+) = limt′↘t x(t′)
for each t ∈ T .

Definition 1: (global exponential stability) For ω ≡ 0, the
equilibrium point x = 0 of Σ is Globally Exponentially
Stable (GES) if there exist k, l ≥ 0 such that ‖x(t)‖ ≤
k exp(−l(t− t0))‖x(t0)‖ for all t ≥ t0 and for any x(t0).

Definition 2: (input-to-state stability) The system Σ is
input-to-state stable (ISS) if there exist a class-KL function
β and a class-K∞ function γ such that, for any x(t0)
and every input ω, the corresponding solution x(t) satisfies
‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ(‖ω[t0, t]‖∞).

Definition 3: (uniform bounded-input bounded-output sta-
bility) The system Σ is uniformly bounded-input bounded-
output stable if there exists a finite constant η such that,
for any t0 and any input signal ω(t), the corresponding
zero-state response (i.e., x0 = 0nx

) satisfies ‖x[t0, t]‖∞ ≤
η‖ω[t0, t]‖∞.

Definition 4: (Lp-stability) Let p ∈ [1,∞]. The system Σ
is Lp-stable from ω to y with gain γ ≥ 0 if there exists
K ≥ 0 such that ‖y[t0, t]‖p ≤ K‖x0‖+ γ‖ω[t0, t]‖p for all
t ≥ t0.

Definition 5: (detectability) Let p, q ∈ [1,∞]. The state
x of Σ is Lp to Lq detectable from (y, ω) to x with gain
γ ≥ 0 if there exists K ≥ 0 such that ‖x[t0, t]‖q ≤ K‖x0‖+
γ‖y[t0, t]‖p + γ‖ω[t0, t]‖p for all t ≥ t0.

Definitions 1 and 2 are taken from [14], Definition 3 is
taken from [15], while Definitions 4 and 5 are found in [16].

D. Switched Systems and Average Dwell-Time

Consider a family of systems (1) indexed by the param-
eter ρ taking values in a set P = {1, 2, . . . ,m}. Let us
define a right-continuous and piecewise constant function
σ : [t0,∞)→ P called a switching signal [11]. The resulting
switched system is given by

Σσ


ẋ = fσ(x, ω)

y = g(x, ω)

}
t ∈

⋃
i∈N0

[ti, ti+1),

x(t+) = hσ(x(t)) t ∈ T .

(2)

For each switching signal σ and each t ≥ t0, let Nσ(t, t0)
denote the number of discontinuities, called switching times,
of σ on the open interval (t0, t). We say that σ has average
dwell-time τa if there exist two positive numbers N0 and τa
such that

Nσ(t, t0) ≤ N0 +
t− t0
τa

(3)

for every t ≥ t0. For a comprehensive discussion refer to
[11] and [13]. In this paper, different values of σ correspond
to different topologies L.



III. PROBLEM STATEMENT

Consider N linear systems, i.e., agents, given by

ẋi = Aixi +Biui, yi = Cixi, (4)

where xi ∈ Rnxi is the state, ui ∈ Rnui is the input, yi ∈
Rny is the output of the ith system, i ∈ {1, 2, . . . , N}, and
Ai, Bi, Ci are matrices of appropriate dimensions. The set
of all agents is denoted V; hence, |V| = N . Motivated by [2,
Chapter 2], we consider the following decentralized control
policy

ui = −Ki

∑
j∈Ni

[(yi − yj)− (di − dj)] + ωi, (5)

where Ki is a nui ×ny matrix, Ni denotes the set of neigh-
bors of the ith system, di ∈ Rny is the bias term, and ωi ∈
Rny is the disturbance term. Next, we define the following
stack vectors x := (x1, x2, . . . , xN ), y := (y1, y2, . . . , yN ),
d := (d1, d2, . . . , dN ) and ω := (ω1, ω2, . . . , ωN ). Knowing
the Laplacian matrix L of a communication graph G, the
closed-loop dynamic equation of (4) given the control law
(5) becomes

ẋ = Aclx−Bcld+Bdω, y = Cclx, (6)

where

Acl = [Acl
ij ], Acl

ij =

{
Ai − liiBiKiCi, i = j

−lijBiKiCj , otherwise
,

Bcl = [Bcl
ij ], Bcl

ij = −lijBiKi,

Ccl = diag(C1, C2, . . . , CN ), Bd = diag(B1, B2, . . . , BN ).

In the above expressions, Acl
ij and Bcl

ij are matrix blocks
while diag(·, ·, . . . , ·) denotes the block-diagonal matrix.

Assumption 1: Acl is Hurwitz.
When ω ≡ 0ny , the equilibrium of (6) is given by

xeq =
(
Acl
)−1

Bcld (7)

with the corresponding output (i.e., synchronization point)

yeq = Cclxeq. (8)

Definition 6: Suppose we have a system of N agents
given by (4). We say that the agents output synchronize if
‖y − yeq‖ → 0 as t→∞.

Remark 1: The above definition of output synchronization
differs from the definition found in, for instance, [4] where
it is required that ‖yi − yj‖ → 0 as t → ∞ for all
i, j ∈ {1, 2, . . . , N}. Our definition aims at controlling the
asymptotic values yeq of the outputs y regardless of initial
conditions. Problems in which the asymptotic values of y
depend on initial conditions are characterized by matrices
Acl that have an eigenvalue at the origin. These problems are
the subject of our forthcoming publications. In our definition,
notice that one can change yeq by changing d. For example,
one can change formations by changing d.

It is well known that substitutions x′ = x− xeq and y′ =
y − yeq transform (6) into the equivalent system

ẋ′ = Aclx′ +Bdω, y′ = Cclx′, (9)

such that x′eq = 0 is the equilibrium point when ω ≡ 0ny
.

From Assumption 1 and [14, Corollary 5.2.], we infer that
the closed-loop system (9) is Lp-stable from ω to y′ for each
p ∈ [1,∞].

Since we do not consider continuous feedback in (5), the
control signal becomes

ui = −Ki

∑
j∈Ni

[(ŷi − ŷj)− (di − dj)] + ωi, (10)

where ŷj is the most recently transmitted value of the output
of the jth agent. Let Ti := {tji : j ∈ N} denote the set of
broadcasting time instants of the ith agent and T := ∪Ni=1Ti.
In order to account for the fact that outdated ŷi’s are used in
control law (5) and not the actual outputs yi’s, we introduce
the output error vector

e := ŷ − y. (11)

The above expression uses ŷ := (ŷ1, ŷ2, . . . , ŷN ). Taking e
into account, the closed-loop dynamics (9) become

ẋ′ = Aclx′ +Bcle+Bdω. (12)

Since ˙̂y = 0 and ẏeq = 0, the corresponding output error
dynamics are

ė = −Cclẋ′. (13)

Problem 1: Partition the set of agents V into subsets Pi’s
with the following property: when all agents in each Pi
broadcast simultaneously, message collisions are avoided.

Problem 2: Given a fixed topology, design sets of broad-
casting instants Ti, i ∈ {1, 2, . . . , N}, such that the outputs
of agents synchronize in the sense of Definition 6.

Problem 3: Find conditions that preserve output synchro-
nization under switching communication topology.

IV. METHODOLOGY

A. Decentralized Topology Discovery for Directed Graphs

In order to solve Problem 1, each agent has to know the
communication topology, i.e., the graph Laplacian matrix L.
This problem is known as topology discovery and has been
an active area of research (e.g., [8] and [9]). In this paper
we implement the approach from [8] due to its applicability
to directed graphs. This approach converges in finite time ∆
after the network topology stops changing. ∆ is proportional
to diam(G). Since we consider a finite number of agents
N , there exists an upper bound on ∆, denoted ∆u, for all
admissible topologies. The admissible topologies are those
that satisfy Assumptions 1 and 2.

Assumption 2: All unidirectional links have an inclusive
cycle.
Assumption 2 is the main assumption in [8]. In order to
simplify the exposition of this paper, we take ∆u = 0.

Remark 2: Notice that leader-follower topologies do not
satisfy Assumption 2. In case of fixed communication topolo-
gies, Assumption 2 can be omitted as this assumption is
needed only for decentralized topology discovery. Thus, the
work presented herein is applicable to time-invariant leader-
follower topologies as well.



Fig. 1. The graph partition P1 = {1, 3}, P2 = {2, 5} and P3 = {4}.

B. Partitioning the Agents

After obtaining L using the approach from [8], we have
to partition the set V in order to avoid message collisions
according to the radio network model. In other words, we
want to allow simultaneous broadcast of agents that have no
common receivers and are not receivers themselves at that
particular time instants. Notice that, if one is not concerned
with message collisions, then there is no need to partition
the agents.

Consider the graph depicted in Figure 1. The correspond-
ing graph Laplacian matrix is

L1 =

[ 2 − 1 0 − 1 0
0 1 − 1 0 0
0 0 1 0 − 1

− 1 − 1 0 2 0
0 0 − 1 − 1 2

]
. (14)

This graph satisfies Assumption 2. Next, we partition V =
{1, 2, 3, 4, 5} in Figure 1 using Algorithm 1. In Algorithm 1,
the element-wise product of the ith and the jth column of L
is denoted L(i).L(j). The input to the algorithm is L, and
the outputs are subsets Pi. The number of nonempty Pi’s is
T ≤ N , and we prune empty Pi’s.

Algorithm 1 Graph partitioning algorithm.
1: Pi ← {∅} for all i ∈ {1, . . . , N}; k ← 0
2: for i = 1 to N do
3: if i 6∈ Pm for every m ∈ {1, . . . , N} then
4: k ← k + 1
5: Pk ← Pk ∪ {i}
6: for j = i+ 1 to N do
7: if L(i).L(j) = 0N for all i ∈ Pk then
8: Pk ← Pk ∪ {j}
9: end if

10: end for
11: end if
12: end for

C. Designing Broadcasting Instants

In order to solve Problem 2, we use the extensions of
[16] reported in [10]. The details of [10] are out of scope of
this paper. In what follows, we provide only the scheduling
protocol considered herein and adapt results from [10] to this
specific protocol. In other words, even though the framework
presented in this subsection is applicable to the larger group
of uniformly persistently exciting scheduling protocols [16],
we do not pursue that direction in this paper.

Protocol 1: The agents from P[(i+1) mod T ]+1 broadcast
their outputs τ seconds after the agents from P[i mod T ]+1

have broadcast their outputs, where mod is the module
operator.

Fig. 2. Interconnection of the nominal and the output error dynamics.

Notice that elements of the set T[(i+1) mod T ]+1 are equal
to elements T[i mod T ]+1 increased by τ . The impact of
broadcasting agents’ outputs is as follows:

Property 1: If the ith agent broadcasts at time t, the
corresponding components of e reset to zero while other
components remain unchanged, i.e.,

e+(i−1)ny+1(t) = . . . = e+iny
(t) = 0,

e+j (t) = ej(t),

}
(15)

for all j ∈ {1, . . . , Nny} \ {(i− 1)ny + 1, . . . , iny}, where
the set difference is denoted \.

Now, let us interconnect dynamics (12) and (13) and
employ the small-gain theorem [14]. To this end, we upper
bound the output error dynamics (13) as follows:

¯̇e = −Ccl(Aclx′ +Bcle+Bdω) � A∗ē+ ỹ(x′, ω), (16)

where

A∗ = [a∗ij ] := max{|c∗ij |, |c∗ji|}, (17)

ỹ(x, ω) := Ccl(Aclx+Bdω). (18)

In (17), we use −CclBcl = [c∗ij ]. Notice that A∗ ∈ A+
ne

and ỹ : Rnx × Rnω → Rne
+ is a continuous function. With

this choice of A∗ and ỹ, the upper bound (16) holds for all
(x′, e, ω) ∈ Rnx × Rne × Rnω and all t ∈ R.

Theorem 1: Suppose that Protocol 1 is implemented. In
addition, suppose that τ ∈ (0, τ∗), where τ∗ := ln(2)

‖A∗‖T .
Then, the output error system (13) is Lp-stable from ỹ to e
for any p ∈ [1,∞] with gain

γe =
T exp(‖A∗‖(T − 1)τ)(exp(‖A∗‖τ)− 1)

‖A∗‖(2− exp(‖A∗‖Tτ))
. (19)

Next, take (e, ω) to be the input and ỹ, obtained in
Theorem 1, to be the output of the dynamics (12). For given
p ∈ [1,∞], the corresponding Lp-gain from (e, ω) to ỹ is
denoted γ. Hence, systems (12) and (13) are interconnected
according to Figure 2.

Theorem 2: Suppose that Protocol 1 is implemented. If
the interbroadcasting interval τ in (19) is such that γγe < 1,
then the interconnection in Figure 2 is Lp-stable from ω to
(e, ỹ) for given p ∈ [1,∞].

Remark 3: Notice that γe(τ) in (19) is a monotonically
increasing function of τ ∈ [0, τ∗). In addition, notice that
γe(0) = 0. By the assumption of Theorem 2, we know that
γ <∞. Since our goal it to design τ such that γγe(τ) < 1,
we first find τ ′ such that γγe(τ ′) = 1, and then compute
τ = κτ ′, where κ ∈ (0, 1). Due to monotonicity of γe(τ),
the obtained τ ′ is strictly positive; hence, τ = κτ ′ is strictly



positive. Consequently, the unwanted Zeno behavior [12]
is avoided. In other words, our approach does not yield
continuous feedback that is impossible to implement with
digital technology.

Remark 4: Because this paper investigates linear time-
invariant agents (4) and control laws (5), the upper bound
(16) holds globally. Consequently, γe in (19) does not depend
on (x′, e, ω). Hence, in case the topology is fixed, the rule
τ = κτ ′ yields periodic broadcasting for the given topology.
This is the time-triggered feature of our approach. Next,
any change of the topology generates an event that triggers
a recomputation of τ . This is the event-triggered feature
of our approach. However, scenarios with a time-varying
κ or the upper bound (16) that holds only locally would
yield a time-varying τ even for a fixed topology (refer to
[10] for more details). Having that said, our methodology is
surely an instant of self-triggering. Lastly, notice that τ is
independent of yeq , i.e., the agents do not need to know the
synchronization point yeq ahead of time which would in turn
compromise the decentralized nature of our approach.

From Assumption 1 and [14, Corollary 5.2.], we infer that
for (12) there exist Kd, γd ≥ 0 such that ‖x′[t0, t]‖p ≤
Kd‖x′0‖ + γd‖(e, ω)[t0, t]‖p for any p ∈ [1,∞]. Conse-
quently, x′ is Lp to Lp detectable from (e, ω, ỹ) for any
p ∈ [1,∞].

Corollary 1: Assume that the conditions of Theorem 2 are
met. Then, output synchronization of systems given by (4)
is Lp-stable from ω to (e, x′) for given p ∈ [1,∞].

Corollary 2: Assume that the conditions of Theorem 2 are
met. Then, output synchronization of systems given by (4)
is ISS from ω to (e, x′).

V. STABILITY UNDER SWITCHING TOPOLOGY

The switched system with impulsive effects we are con-
sidering herein is[
ẋ′

ė

]
=

[
Aclσ Bclσ

−CclAclσ −CclBclσ

] [
x′

e

]
+

[
Bd

−CclBd
]

︸ ︷︷ ︸
Bω

ω, t 6∈ T ,

x′+(t) = x′(t)

e+(t) = Γie(t)

}
t ∈ T , (20)

where matrix Γi implements Property 1 at the ith broadcast-
ing instant. To shorten the notation, we use z := (x′, e).

A. Switching without Disturbances

After setting ω ≡ 0ny
in (20), we obtain the following

result:
Theorem 3: Suppose that the conditions of Corollary 1

hold and ω ≡ 0ny
. In addition, assume that L is fixed. Then,

the equilibrium point (e, x′) = 0 of the closed-loop system
(12) and (13) is GES.

Next, notice that the equilibrium point xeq given by (7)
is a function of L. In other words, different communication
topologies result in different xeq , i.e., different x′. In order
to apply results from [13] and [11], xeq must be the same for
all admissible topologies. This can be achieved by adapting

d in (7) such that xeq is constant as the topology changes
or one can simply use d = 0nd

yielding xeq = 0nx
. For the

sake of simplicity, we use d = 0ny herein. Consequently,
x′ = x holds so we use x instead of x′ in the remainder of
the paper.

According to Theorem 3, each subsystem in P is GES. Let
us now apply [17, Theorem 15.3.] to each subsystem in P .
From (20) we infer that the flow and jump maps are Lipschitz
continuous and are zero at zero. In addition, jump times ti’s
are predefined (i.e., time-triggered and do not depend on
the actual solution of the system), and such that 0 < t1 <
t2 < . . . < ti and limi→∞ ti = ∞ hold. Consequently,
all conditions of [17, Theorem 15.3.] are met. Hence, there
exist functions Vρ : R×Rnx+ne → R, ρ ∈ P , that are right-
continuous in t and Lipschitz continuous in z, and satisfy
the following inequalities

c1,ρ‖z‖2 ≤ Vρ(t, z) ≤ c2,ρ‖z‖2, t ≥ t0, (21)

D+
ρ Vρ(t, z) ≤ −c3,ρ‖z‖2, t 6∈ T , (22)

Vρ(t
+, z+) ≤ Vρ(t, z), t ∈ T , (23)

for all z ∈ Rnx+ne , where c1,ρ, c2,ρ and c3,ρ are positive
constants. These constants are readily obtained once k and l
from Definition 1 are known (see the proof of [17, Theorem
15.3.]). In the above inequalities, D+

ρ Vρ(t, z) denotes the
upper right derivative of function Vρ with respect to the
solutions of the ρth system. The upper right derivative of
Vρ is given by D+

ρ Vρ(t, z) := lim suph→0,h>0

(
1
h [Vρ(t +

h, z(t+ h))− Vρ(t, z(t))]
)

, where z(t), t ≥ t0, denotes the
trajectory of the ρth system. We now rewrite (21) and (22)
as follows

c1‖z‖2 ≤ Vρ(t, z) ≤ c2‖z‖2, t ≥ t0, (24)

D+
ρ Vρ(t, z) ≤ −2λ0Vρ(t, z), t 6∈ T , (25)

Vρ(t, z) ≤ µV%(t, z), t ≥ t0, (26)

for all z ∈ Rnx+ne and all ρ, % ∈ P , where

c1 = min
ρ∈P

c1,ρ > 0, c2 = max
ρ∈P

c2,ρ > 0,

λ0 = min
ρ∈P

c3,ρ
2c1,ρ

> 0, µ = max
ρ,%∈P

c2,ρ
c1,%

> 0.

Notice that µ > 1 in the view of interchangeability of ρ and
% in (26). Following ideas from [11] and [13], we obtain the
following result:

Theorem 4: Consider the family of m systems for which
(23), (24), (25) and (26) hold. Then the corresponding
switched system (20) is GES uniformly in t0 for every
switching signal σ with average dwell-time

τa >
lnµ

2λ0
(27)

and N0 arbitrary.
Remark 5: Recall that changes of the topology in

[ti, ti+1), where ti, ti+1 ∈ T , remain unnoticed until ti+1 (or
even later). Therefore, if mini∈P τi ≥ τa, then we effectively
have that the switched system (20) is GES uniformly in t0
for any switching signal. Obviously, we want to obtain τi’s



in Subsection IV-C as large as possible. This is yet another
motivation for developing self-triggered control policies.

B. Switching with Disturbances
Notice that (20) can be interpreted as a linear time-varying

impulsive system. From Theorem 4 we infer that the state
transition matrix Φ(t, t0) of (20) satisfies

‖Φ(t, t0)‖ ≤ k exp(−l(t− t0)), (28)

where k =
√

c2
c1
µN0 and l = λ for some λ ∈ (0, λ0).

For the explicit form of state transition matrices of linear
time-varying impulsive systems refer to [17, Chapter 3].
From the corresponding variation of constants formula (see
[17, Chapter 3]) z(t) = Φ(t, t0)z(0) +

∫ t
t0

Φ(t, s)Bωω(s)ds,
and (28), we obtain ‖z(t)‖ ≤ k exp(−l(t − t0))z(0) +
bk
∫ t
t0

exp(−l(t − s))‖ω(s)‖ds, where ‖Bω‖ ≤ b. Since
t ≥ t0, therefore

∫ t
t0

exp(−l(t − s))ds ≤ 1/l for any t0.
Using [15, Theorem 12.2], we infer that (20) is uniformly
bounded-input bounded-state stable which in turn implies
ISS (refer to [2, Theorem 2.35 & Remark 2.36] for more).

Theorem 5: Assume that Theorem 4 holds so that the
system (20) is GES uniformly in t0 for every switching signal
σ with average dwell-time (27). Then, output synchronization
of systems given by (4) is ISS from ω to (e, x).

VI. EXAMPLE

Consider the following five agents:

A1 =
[−3 1

2 −1
]
, B1=

[−4
−4
]
, C1=

[
−4 1

]
, K1=2,

A2 =
[
1
]
, B2=

[
−1

]
, C2=

[
−5

]
, K2=4,

A3 =
[−2 −5

1 −1
]
, B3=

[−2
−1
]
, C3=

[
−1 −1

]
, K3=−2,

A4 =
[−3 −1

5 −3
]
, B4=

[−4
−2
]
, C4=

[
0 −4

]
, K4=4,

A5 =

[
1 3 1
0 −1 1
1 0 0

]
, B5=

[−1
−1
1

]
, C5=

[
−1 −1 −1

]
, K5=5.

In addition to topology L1 given by (14), we consider another
topology given by

L2 =

[ 1 − 1 0 0 0
0 1 − 1 0 0
0 0 1 0 − 1

− 1 0 0 1 0
0 0 − 1 − 1 2

]
. (29)

Applying Algorithm 1 to L2, we obtain P1 = {1, 3}, P2 =
{2, 4} and P3 = {5}.

Let us consider the case p = 2 and apply [14, The-
orem 5.4]. Using the MATLAB function norm(·, inf), the
corresponding L2-gain from (e, ω) to ỹ is readily obtained:
γ1 = 132. Solving (19) with T = 3 such that γ1γe,1 < 1
yields τ1 = 1.1 ∗ 10−3 s for κ = 0.999. This corresponds
to broadcasting frequency of 307 Hz for each agent. The
same steps for L2 yield γ2 = 267, τ2 = 8.7 ∗ 10−4 s and
broadcasting frequency 383 Hz for each agent.

In order to verify results of Section V, we toggle between
topologies L1 and L2. Numerical results are provided in
Figure 3. We choose ωi(t) = 5t[0,4.4)−5t[4.4,8.8) +0t[8.8,13],
i ∈ {1, . . . , nd}, where tI is the indicator function on an
interval I. In other words, tI = t when t ∈ I and zero
otherwise.
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Fig. 3. Outputs of the agents for a scenario with disturbance. Magenta
dots indicate switching instants.
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