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Abstract— This paper presents a novel method for Bayesian
bearing-only tracking. Unlike the classical approaches, which
involve using Gaussian distribution, the tracking procedure is
completely covered with the von Mises distribution, including
state representation, transitional probability, and measurement
model, since it captures and models well the peculiarities of
directional data. The state is represented with a mixture of von
Mises distributions, thus offering advantages of being able to
model multimodal distributions, handle nonlinear state tran-
sition and measurement models, and to completely cover the
whole state space, all with a modest number of parameters. The
tracking procedure is solved by convolution with a von Mises
distribution (prediction step) and multiplication with a mixture
representing the measurement model (update step). Since in
the update step the number of mixture components grows
exponentially, a method is presented for component reduction
of a von Mises mixture. Furthermore, a closed-form solution is
derived for quadratic Rényi entropy of the von Mises mixture.
The algorithm is tested and compared to a particle filter
representation in a speaker tracking scenario on a synthetic
data set and real-world recordings. The results supported the
proposed approach and showed similar performance to the
particle filter.

I. INTRODUCTION

Directional data, like bearing (azimuth) and heading, is
encountered often in many applications, including mobile
robotics. For an example, the heading direction in odom-
etry, compass measurements, bearing of various features in
monocular camera images (both perspective and catadiop-
tric), and the speaker bearing estimated with a microphone
array, to name but a few. Working with directional data,
especially under uncertainty, imposes a problem on how to
represent them in probabilistic frameworks. Commonly this
problem is solved by using a Gaussian distribution, which
unfortunately does not capture well the non-euclidean prop-
erties of directional data. Furthermore, since small errors in
the heading can result with great errors in the final location,
the need to faithfully model the directional data should not be
dismissed lightly. Therefore, circular distributions, of which
von Mises is an example, are often adopted and utilized to
model angular random variables.

The robotics community has recognized the benefits of
the von Mises distribution to model directional data. In [1]
the von Mises distribution was used in odometry to deal
with the heading changes for topological model learning.

*This work has been supported by the Ministry of Science, Education
and Sports of the Republic of Croatia under grant No. 036-0363078-3018
and European Community’s Seventh Framework Programme under grant
agreement no. 285939 (ACROSS).
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In [2] the authors proposed a solution for solving large-
scale partially observable Markov decision processes and
tested the algorithm first on a synthetic problem of a circular
corridor, where the transition and observation probabilities
were modeled with the von Mises distribution. In [3] the
emission distribution of a hidden Markov model was learned
by estimating parameters of the von Mises distribution in
order to model compass measurements in a localization
problem. In our previous work [4] we also utilized the von
Mises distribution for speaker localization and tracking, but
only to model the measurement likelihood of the microphone
array, whereas the particle filter (PF) was used for the state
representation.

In the present paper, we propose to model the complete
bearing-only tracking process with the von Mises distribu-
tion; from the state representation and transition probability
to the measurement likelihood. Compared to the PF, the ben-
efits of the proposed approach lie in representing the function
and not just the density, and in the fact that less components
are needed to model the state. For the classical Bayesian
tracking procedure with a mixture of von Mises densities we
solved the following problems: (i) the convolution and (ii) the
product of two von Mises distributions, (iii) the algorithm for
component reduction of a mixture of von Mises distributions,
and (iv) the analytical expression for the entropy of a mixture
of von Mises distributions in order to have a measurement of
the state uncertainty. The solution for the first two problems
are presented from the literature, the third problem is solved
by adapting a component reduction technique for Gaussian
distributions, while the fourth problem is solved by deriving
the entropy from the beginning.

The rest of the paper is organized as follows. In Sec-
tion II we present the theoretical background required for
Bayesian tracking with a mixture of von Mises distributions.
Section III reports the results of experiments with synthetic
and real-world data, while Section IV concludes the paper.

II. THEORETICAL BACKGROUND

The problem at hand is to analyze and make inference
about a dynamic system. For that, two models are required:
one predicting the evolution of the state over time (system
model), and one relating the noisy measurements to the
state (measurement model). We assume that both models
are available in probabilistic form. Thus, the approach to
dynamic state estimation consists of constructing the a
posteriori probability density function (pdf) of the state based
on all available information.

A Bayesian tracking procedure consists of two steps:
prediction and update [5], [6]. The prediction step involves



calculating the prior pdf via the total probability theorem:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1,

(1)
where p(xk|xk−1) is the probabilistic model of the state
evolution, p(xk−1|z1:k−1) is the posterior at time k−1, and
z1:k−1 are all measurements up to and including time k−1.
In the update step, the posterior at time k is calculated via
the Bayes theorem:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
, (2)

where p(zk|xk) is the sensor model and p(zk|z1:k−1) is
the normalizer, which can be calculated using the total
probability theorem via:

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1) dxk. (3)

In this paper we infer about circular random variables and
that brought us to the use of the von Mises distribution for
modeling the system state, state transition probability, and
sensor model. Given that, we now explicitly calculate the
relations (1) and (2) for von Mises distributions.

A. The von Mises distribution

The pdf of the von Mises distribution is given by [7]:

p(x;µ, κ) =
1

2πI0(κ)
exp [κ cos(x− µ)] , (4)

where 0 ≤ x ≤ 2π, µ is the mean direction, κ ≥ 0 is the
concentration parameter, and

In(κ) =
1

2π

∫ 2π

0

exp(κ cos ξ) cos(nξ) dξ (5)

is the modified Bessel function of the first kind and of order
n. The distribution is unimodal and symmetric around the
µ. The mean direction µ is analogous to the mean of the
Gaussian distribution, while the concentration parameter κ
is analogous to the inverse of the variance of the Gaussian
distribution.

B. Convolution of the von Mises distributions

The prediction step given by (1) is actually a convolution
of two pdfs. Given two von Mises pdfs, p(x;µi, κi) and
p(x;µj , κj), the resulting convolution of a predicted state
will be of the following form [8]:

h(x) =
1

2πI0(κi)I0(κj)

· I0
({
κ2i + κ2j + 2κiκj + cos(x− [µi + µj ])

}1/2)
,

(6)

which in fact is not a von Mises distribution, but can be well
approximated by the following pdf [8]:

h(x) ≈ p(x;µi + µj , A
−1(A(κi)A(κj)) (7)

where
A(κ) =

I1(κ)

I0(κ)
, κ ≥ 0 (8)

is the ratio of the modified Bessel functions of order one and
order zero, and A−1( . ) is its inverse.

C. Product of the von Mises distributions

The numerator in the update step given by (2) involves a cal-
culation of a product of two von Mises distributions. Given
the following von Mises pdfs, p(x;µi, κi) and p(x;µj , κj),
the resulting product is of the following form [9]:

g(x) =
1

4π2I0(κi)I0(κj)
exp [κij cos(x− µij)] , (9)

where

µij = µi + atan2 (− sin ∆µ, κi/κj + cos ∆µ) , (10)

κij =
√
κ2i + κ2j + 2κiκj cos ∆µ, (11)

and ∆µ = µi − µj . The product in (9) is an unnormalized
von Mises distribution. Note that in order to complete the
update step, we still need to calculate (3). This step can
be circumvented since (9) can be well approximated by the
following von Mises pdf [9]:

g(x) ≈ p(x;µij , κij), (12)

where the mean direction, µij , and the concentration param-
eter, κij , are given by (10) and (11), respectively.

It is interesting to note at this point that the product of
von Mises distributions calculated by (9) has very different
properties than the product of Gaussian distributions. For
an example, the concentration parameter of the product is
a function of the factor pair mean directions and concentra-
tions, while in the case of Gaussian distributions, the variance
of the product is only function of the factor pair variances.
Given that, if the distance between factor pair mean direc-
tions is large enough, it is possible that the concentration
parameter of the product will be smaller (representing higher
uncertainty) than any concentration parameter of the factor
pair. Indeed, a product of von Mises distributions calculated
via (12) with equal concentration parameters and antipode
mean directions will yield a uniform distribution.

D. Tracking with a mixture of von Mises distributions

In this paper, the goal is to estimate the bearing, xk, of the
tracked object at time k given the posterior p(xk|z1:k). Note
that xk is now a scalar value, but that the measurements,
zk, can still be a vector. There exists many approaches to
state representation and state estimation [5], [10], some of
them being Gaussian, histogram, particle, Gaussian mixture
and kernel mixture representations. State estimation from all
of these approaches follows the classical Bayesian approach
of prediction-update steps, which for the Gaussian represen-
tation are explicit in the form of the Kalman Filter and its
variants. For the rest, the reader is directed to [5], [10] for
reference.

Previously stated representations, albeit excluding the
(single) Gaussian representation, have the ability to model
multi-modal pdfs and deal quite well with highly non-
linear functions. However, most of them are appropriate for



estimating states of euclidean nature. Take for an example,
the problem of maximum likelihood (ML) estimation of the
mean value of independent identically distributed Gaussian
random variables. For such a problem, the solution would
be to calculate the arithmetic mean [11]. However, if such
approach was applied to angular values θ, ranging from 0 to
2π, then the solution would yield an incorrect result, since
the mean value of just 0 and 2π would be π instead of 0
or 2π. Moreover, values such as θ ± 2kπ, k ∈ N should all
have equal probabilities.

Although there are several distributions appropriate for
circular models [8], the von Mises distribution is the most
commonly used and studied, since it provides a closed-form
analytical framework for many applications. For an example,
the ML estimator of the mean of independent identically
distributed von Mises random variables would yield [8]:

µ̂ = atan2

[∑
i

sin(µi),
∑
i

cos(µi)

]
, (13)

which is the correct expression for calculating the mean of
angular values. Given that, we represent the posterior of a
circular random variable as a convex combination of N von
Mises kernels:

p(xk|z1:k) =

N∑
i=1

γi
1

2πI0(κi)
exp [κi cos(xk − µi)] , (14)

where
∑
i γi = 1. As stated earlier, the state transition

probability is also a von Mises pdf:

p(xk|xk−1) =
1

2πI0(κ)
exp [κ cos(xk − xk−1)] , (15)

which on closer inspection will only spread the posterior
(increase the uncertainty) in the prediction step. Following a
similar train of thought as for (14), we also write the sensor
model as a convex combination of M von Mises pdfs:

p(zk|xk) =

M∑
i=1

γi
1

2πI0(κi)
exp [κi cos(xk − zk,i)] , (16)

where
∑
γi = 1, not necessarily equal to the ones in (14).

Note that by doing so, we also allow the sensor model to be
a multimodal pdf.

Finally, from a multimodal distribution we infer the state
xk as a maximum a posteriori (MAP) estimate from the
posterior p(xk|z1:k):

x̂k = arg max
xk

p(xk|z1:k). (17)

Basically, a Bayesian tracking algorithm with previously
defined state representation, motion model and sensor model,
would consist of: (i) initially setting up an a priori distri-
bution via (14) (N von Mises pdfs uniformly spread with
small κ), (ii) convolving (14) with (15), (iii) multiplying the
result of the convolution with (16), (iv) estimating the state,
and then repeating steps (ii), (iii), and (iv) over time. The
only problem with the previous procedure is the step (iii),
where the state representation consisting of N von Mises

pdfs is multiplied with M von Mises pdfs of the sensor
model. This yields M ·N von Mises pdfs and would hence
grow exponentially in time. In order to solve this problem,
we need to reduce the number of the components in the
mixture.

E. Reducing the number of mixture components

In this paper, we propose a variant of the West’s algorithm
[12] for reduction of the number of von Mises components,
which in its original form has computational complexity of
O(N logN) [10]. West’s algorithm, in essence, reduces the
number of components by searching for the nearest neigh-
bour, and then replaces the pair with a single component
whose parameters are an average of the pair’s values. Orig-
inally, this algorithm was developed to reduce the number
of components with equal variances, with similarity criteria
being the nearest neighbour in the mean value. In order to
adapt the algorithm for reducing the mixture of von Mises
components, we introduce the following modifications.

The most important modification is the use of Bhat-
tacharyya coefficient as a measure of pdf similarity:

cB(p, q) =

∫ 2π

0

√
p(ξ)q(ξ) dξ, (18)

where 0 ≤ cB ≤ 1, and can be though of as a measure
of overlap of two pdfs (0 if no overlap). Another practical
property of cB is that it can be derived for two von Mises
pdfs in closed form [13]:

cB (p(x;µi, κi), p(x;µj , κj)) =
I0 (κij/2)

{I0(κi)I0(κj)}1/2
. (19)

In [13] cB was derived for expectation-maximization (EM)
algorithm in order to estimate the parameters of a mixture of
von Mises distributions. Similarly, the EM approach could
be applied in this paper for component number reduction,
but the computational complexity would be higher than that
of the West’s algorithm [10]. The rest of the modifications
are minor, and the pseudocode is given in Algorithm 1.

F. Entropy of the von Mises mixture

In tracking applications it is often very practical, if not
necessary, to have a measure of uncertainty of the tracked
state. While the uncertainty of unimodal distributions is
characterized by their respective parameters, for multimodal
distributions the same it is not that straightforward. There-
fore, for the latter case, entropy is usually utilized for
uncertainty calculation and as a practical feature in track
management [10], [14].

Entropy of a mixture of von Mises-Fisher distributions, a
probability distribution on a sphere, can be found in [15].
However, reducing the dimension of the result in [15] in
order to derive an expression for entropy of a mixture of
von Mises distributions is not a straightforward task, and
therefore we derive a closed-form solution in this paper. Note
that in this derivation we allow the kernels to have different
concentrations parameters.



Algorithm 1 Reduction of the von Mises components

Require: Components parameters {µi, κi, wi}NMi=1

Ensure: Reduced component parameters
{
µ∗
j , κ

∗
j , w

∗
j

}N
j=1

1: Sort ascending by weights: sort({µi, κi, wi}NMi=1 )
2: r ←MN
3: while r > N do
4: for i = 2 : r do
5: cB ← I0 (κ1i/2) / {I0(κ1)I0(κi)}1/2
6: end for
7: k ← find(cB == max(cB))
8: Remove components 1 and k:

remove({µi, κi, wi}i=1,k, {µi, κi, wi}ri=1)
9: µ∗ ← µ1 + atan2[− sin(µ1 − µk), κ1

κk
+

cos(µ1 − µk)]
10: κ∗ ← max(κ1, κk)
11: w∗ ← w1 + wk
12: Insert new component by weight:

insert({µ∗, κ∗, w∗}, {µi, κi, wi}r−2
i=1 )

13: r ← r − 1
14: end while
15:
{
µ∗
j , κ

∗
j , w

∗
j

}N
j=1
← {µi, κi, wi}Ni=1

A measure of entropy can take many analytical forms.
Shannon entropy of a mixture of distributions cannot be
expressed in closed-form, while Rényi entropies usually offer
a more suitable framework for analytical calculations [16].
Therefore, to calculate entropy of the von Mises mixture,
we used the Rényi entropy, which of order α is defined as
follows [17]:

Hα(x) =
1

1− α
log

∫
pα(x) dx, (20)

where 1 ≤ α < ∞. In the limit α → 1 Rényi entropy
becomes Shannon entropy.

The quadratic Rényi entropy of a von Mises mixture is
derived as follows:

H2(xk) = − log

∫ 2π

0

p2(xk|z1:k) dxk

= − log

∫ 2π

0

(
N∑
i=1

γi exp [κi cos(x− µi)]
2πI0(κ)

)2

dxk

= − log

∫ 2π

0

N∑
i=1

N∑
j=1

γi exp [κi cos(xk − µi)]
2πI0(κi)

· γj exp [κj cos(xk − µj)]
2πI0(κj)

dxk

= − log

∫ 2π

0

N∑
i=1

N∑
j=1

γij exp [κij cos(xk − µij)]
4π2I0(κi)I0(κj)

dxk,

(21)

where γij = γiγj , and µij and κij are given by (10) and
(11), respectively. By rearranging the sums and the integral,
and by using definition (5) for n = 0, we arrive to the final

expression for the quadratic Rényi entropy:

H2(xk) = − log

N∑
i=1

N∑
j=1

γij
2πI0(κi)I0(κj)

· 1

2π

∫ 2π

0

exp [κij cos(xk − µij)] dxk

= − log

N∑
i=1

N∑
j=1

γij
I0(κij)

2πI0(κi)I0(κj)
.

(22)

Note that in the last step we have lost explicit dependence
on xk. But on closer inspection, we can see that the state
is implicitly included in κij through the difference ∆µ =
µi − µj .

We can also utilise the symmetry κij = κji in order to
reduce the number of terms in the double sum in (22):

H2(xk) = − log
1

2π

 N∑
i=1

I0(2κi)

I20 (κi)

+2

N∑
i=2

i−1∑
j=1

I0(κij)

I0(κi)I0(κj)

 .
(23)

III. EXPERIMENTS

In this section we investigated the application of the proposed
algorithm in a bearing-only tracking scenario. Furthermore,
the proposed algorithm was compared to an algorithm based
on (PF) from a former paper [4]. Without getting into details
on the signal processing and how the bearing measurements
are derived, only the concept of the used sensor model is
presented.

Basically, if we have two passive sensors like micro-
phones, we can estimate the phase shift between the two
recorded signals. From this phase shift and known distance
between the microphones, one can estimate the bearing of
the sound source. Commonly, this phase shift is determined
via time difference of arrival (TDOA) procedure, where
the signals are cross-correlated and the maximum peak is
searched for. However, front-back ambiguity is inherent to
this procedure, since sound sources emanating in front of
and behind the sensor pair will have the same phase shift.
This problem is solved by using more than two non co-linear
sensors, and the idea in [4] was to model the measurements
of the sensor array as a mixuture of von Mises distributions,
thus yielding a multimodal sensor model like (16). The
important thing to realize from this paragraph is that while
tracking a single target, we will work with a multimodal
distribution representing the sensor measurements. Naturally,
this procedure can also be utilized in a classical scenario
when a sensor reports a unimodal distribution. For details on
the speaker localization and tracking algorithm, the reader is
directed to [4].

A. Synthetic data

We have simulated two trajectories of a maneuvering
object in 2D, where the dynamics of the system were
described by a jump-state Markov model [18]. The second
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(a) The first trajectory
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(b) The second trajectory

Fig. 1. Bearing estimation for the two simulated trajectories. For the first trajectory we can see that both estimators have similar performance—root mean
square error (RMSE) was 2.7◦ and 2.8◦ for the von Mises mixture estimator and PF, respectively. The second trajectory depicts the turn-taking scenario.
We can see that again both show similar performance, and were a bit reluctant at the beginning to switch to a new bearing value. Concerning the entropies,
at the beginning the entropy is largest since the distribution is close to uniform. As the filter is updated with measurements the entropy drops. We can also
see the result of the turn-take at 5–7 s in the second trajectory where the entropy rose due to discrepancy between the believed state and measurements.

trajectory had a rapid change in the bearing value to simulate
a turn-taking scenario in order to test the capability of the
algorithms to keep up with the track in such situations. For
an example, this might occur when one speaker stops talking
and the other continues, or the currently talking speaker
stops, moves around the robot and then continues talking
again. Note that the application of the described speaker
localization algorithm is to detect and track the currently
active speaker, and not to to detect and track multiple
concurrently talking speakers and keep separate tracks for
each one.

In order to make the simulation as realistic as possible
(i) measurements were corrupted with von Mises noise of
κ = 70 to model measurement noise, (ii) outliers where
added with probability PO = 0.3, i.e. close to 30% of
measurements at random locations were corrupted with von
Mises noise of κ = 5, and (iii) detection probability was
PD = 0.9, i.e. close to 10% of measurements at random
locations were discarded.

For the von Mises mixture estimator, we used 12 com-
ponents with mean directions uniformly spread over 0 to
2π, the process model was a single von Mises pdf, while the
likelihood consisted of 12 components. The state was always
represented with 12 kernels but concentration parameters
changed at each iteration. Note that in the case of a mixture
of von Mises pdfs, due to (11), it is not possible to work
with components of the same concentration parameter since
the updated κ is a function of the mean directions.

The PF was implemented as described in [4], where the
likelihood also consisted of 12 von Mises pdfs, the state was
represented with 360 particles, and the process model was a
Langevin motion model [19]. Instead of resampling we used
a variant of regularization [20], where we placed a von Mises
kernel on each particle instead of a Gaussian distribution and
drew new particles from such a multimodal distribution.

The results of the bearing estimation of both trajectories

with the mixture of von Mises pdfs and with the PF along
with corresponding entropies are shown in Fig. 1. In Fig. 1(b)
we can see that the tracking algorithms did not switch right
away to the new bearing value. Of course, both could be
tuned to respond faster to rapid changes by decreasing κ
of the transition pdf or by increasing κ of the measurement
likelihood, but this would be at the cost of higher sensitivity
to outliers. The former parameter tuning depends on the char-
acteristics of the sensor measurements—if we expect large
percentage of outliers, then we should make the estimator
more inert, and vice-versa.

The number of parameters required for the state represen-
tation was smaller in the case of the mixture filter. We used
12 kernels, i.e. 36 parameters including the means, concen-
tration parameters, and weights, while for the particle filter
we used 360 particles, i.e. 360 parameters after regularization
(due to equal particle weights).

The execution time was measured for Matlab imple-
mentation on an Intel Core2Quad processor with 2.33 GHz
frequency (only one core was used). The mean time of
an iteration was 81.2 ms and 72.5 ms for the mixture filter
and the PF, respectively. Furthermore, the mean time of
the component reduction algorithm was 19.7 ms, while the
mean time of the regularization step of the particle filter
was 68.2 ms. We can see that most of the execution time
of the PF went to regularization. If sequential importance
resampling (SIR) was utilised, it would significantly reduce
the execution time (SIR took only 2.3 ms), but comparison
of such a resampling procedure and regularization is out of
the scope of this paper.

B. Real-world data

Microphone array, of our design, consisting of four omni-
directional microphones was placed on a Pioneer 3DX robot
[4]. The audio interface was composed of low-cost micro-
phones, preamplifiers and an external USB soundcard. The
recordings were made with sampling frequency Fs = 48 kHz
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Fig. 2. Real-world data tracking of a speaker making a full circle around
the microphone array. We can notice some outliers due to uniformity of the
prior distribution at the initialization and corrupted measurements caused
by difficult acoustic conditions (reverberation).
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Fig. 3. Real-world data tracking of a turn-take scenario. The first speaker
was located at 50◦, while the second was at 270◦. Qualitatively, the mixture
filter here showed better results since it was able to follow the rapid change
in the tracked value and maintain less noisy estimations.

and frame length L = 1024 samples in a classroom which
has dimensions of 7 m×7 m×3.2 m, parquet wooden flooring,
and one side covered with windows. During the experiments,
typical noise conditions were present, like computer noise
and air ventilation.

Figure 2 shows the results of real-world tracking of a
single speaker making a full circle around the microphone
array, while Fig. 3 shows a turn-take scenario. Speakers were,
at an approximate distance of 2 m, reading sentences from
the IEEE sentence database [21].

IV. CONCLUSION

We have presented all the theoretical steps of Bayesian
tracking with a mixture of von Mises distributions. Although
the algorithm was presented on the problem of speaker
tracking with a microphone array, the potential field of
interest is by no means limited to this application. The
proposed approach can be utilized in any tracking scenario
which involves bearing-only measurements. Furthermore, the

paper highlights the merits of using a von Mises distribution
for directional data, which does not receive that much
attention due to pervasive use of the Gaussian distribution.
One of the potential expected practical significances lies in
systems where the communication bandwidth is limited, e.g.
in decentralized architectures when different robots need to
communicate a posteriori distributions.
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