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Abstract. Detection and tracking of moving objects with camera systems mounted on
a mobile robot presents a formidable problem since the ego-motion of the robot and the
moving objects jointly form a challengingly discernible motion in the image. In this paper
we are concerned with multiple-camera systems, namely the Ladybug R©2 camera, whose
perspective images were used to detect motion and subsequently perform the tracking of
multiple objects on the sphere. This enabled us to account for the continuity of the scene
which is achieved by the sensor in an image stitching process on the sphere. The objects
are tracked on the sphere with a Bayesian filter based on the von Mises-Fisher distribution
and the data association is achieved by the global nearest neighbor method, for which
the distance matrix is constructed by deriving the Rényi α-divergence for the von Mises-
Fisher distribution. The prospects of the proposed method are tested on a synthetic and
real-world data experiments.

1 Introduction

Detection and tracking of moving objects (DATMO) in the surroundings of a mobile platform or
a vehicle is a fundamental step in many different applications. Whether this information is being
used to navigate in an environment populated by moving objects, or to discard regions which are
designated as belonging to moving objects, the DATMO begins with the detection part which
entails processing the information on the raw data level and is later followed by a tracking scheme
which assumes an estimation process. In that sense the detection methods depend strongly on
the nature of the sensor and the phenomena it senses, while the tracking part can depend on the
space in which the measurements are taken. Namely, in the present paper we utilize a multiple-
camera system which forms an omnidirectional image by stitching a series of perspective images
on a unit sphere which is the space in which our measurements reside.

When a camera is placed on a mobile robot the task of detecting moving objects becomes
increasingly more complicated since the total motion in the image is a combination of the mobile
robot ego-motion and the motion of moving objects. In [1] moving object detection with a single
perspective camera was achieved by calculating the optical flow and optimizing the bilinear
transformation to warp the image between the consecutive frames, after which the images are
differentiated and motion is detected. Then the particle filter was used to track the moving
objects in the image and a laser range finder is used to infer about the location in 3D. In [2] the
detection was based on monocular scene reconstruction and affine transformation of a triangle
mesh in order to perform the image warping. The tracking of the moving object and the scene
reconstruction was performed using the extended Kalman filter. Performing motion detection
with the extension of the classical structure-from-motion (SfM) to dynamic scenes with multiple
rigidly moving objects, called multibody SfM, can be found in [3,4]. In [5] people were detected



by using histogram of oriented gradients in a stitched and unwrapped panoramic image using
the Ladybug R©2 multiple-camera system on a mobile robot.

When tracking multiple moving objects the problem of data association plays one of the cru-
cial roles. To solve this problem the methods that can be used are the global nearest neighbor
(GNN) which attempts to find the single most likely data association hypothesis at each scan [6],
joint probabilistic data association filter (JPDA) filter where multiple hypotheses are formed
after each scan and then these hypotheses are combined before proceeding further with the next
scan [7], the multiple hypothesis filter (MHT) where multiple data association techniques are
formed and propagated. Also, another method for tracking of multiple objects is the probability
hypothesis density (PHD) filter [8] which does not solve the data association problem by itself
but a solution has been presented in [9] for the Gaussian mixture PHD [10]. Particular implemen-
tation of the aforementioned tracking methods depends if the Kalman filter, Gaussian mixture
or sequential Monte Carlo methods are used. However, to the best of the authors’ knowledge,
these methods have not been previously applied in a multiple target tracking scenario with a
distribution on the unit sphere—the von Mises-Fisher distribution.

In this paper we propose a novel method for tracking multiple moving objects on the sphere
using the GNN framework which is based on the Bayesian tracking with a von Mises-Fisher
distribution. To solve the task, first we derive means for validation gating on the sphere based on
the measurement likelihood and the predicted state in order to discard unlikely measurements
from the association procedure. To calculate the most likely data association hypotheses we
propose the Rényi α-divergence as a distance measure between the von Mises-Fisher distributions
and expressions thereof are derived in the paper. The Rényi α-divergence is a class of generalized
distances and includes some well known distances such as the Kullback-Leiber and Bhattacharyya
distance. The experimental results of the tracking are first presented on a synthetic data example
and subsequently on experiments obtained by the Ladybug R©2 multiple-camera system. The
system at hand is omnidirectional, but since it forms the omnidirectional image by stitching
images of five perspective camera (the top one was not regarded) the detection of moving objects
was performed by a method developed for perspective cameras [1]. Subsequent moving object
clustering and measurement generation for the tracking process was then performed on the
sphere.

The paper is organized as follows. Section 2 presents utilized algorithm for motion detection
based on image warping. Section 3 describes the proposed multiple object tracking method
based on the von Mises-Fisher distribution, GNN, and Rény α-divergence. Section 4 presents
experimental results, while Section 5 concludes the paper.

2 Detection of Moving Objects

For the detection task we have used a spherical digital video camera system consisting of 6
monocular cameras (namely Ladybug R©2) placed on a mobile platform. Since the system consists
of six perpective cameras, they can be stitched together and thus form a spherical image. Many
sensors, including monocular cameras, are in principle bearing-only sensing systems, whereas
depth can be estimated only up to scale. Here arises the need for tracking of moving objects
on the sphere. In the vein of previously presented problem, the position of an object detected
in any of six images of the camera system is projected onto sphere, which served as an input
for the tracking task. The detection of moving objects becomes quite a difficult problem ones
the robot starts moving, since the ego-motion induces an inherent optical flow. Therefore, to
ensure the efficiency of the algorithm while the platform moves, it is necessary to compensate
ego-motion [1], [2].



The algorithm for ego-motion compensation provides a tranformation between two conse-
qutive frames where the transformation may be estimated either directly or indirectly. Former
relies on various localization systems (e.g. IMU, GPS, odometry), while latter method estimates
the transformation through image processing, avoiding any additional sensors. Such indirect
method is based on salient feature set tracked through consequtive images. For this purpose we
have used Lucas-Kanade algorithm for sparse optical flow calculation presented in [11], [12], [13].
Once the optical flow is established, it is necessary to determine the transformation parameters
for the compensation. Here we used a nonlinear model, which is able to handle both translational
and rotational shifts, in particular a bilinear model given as follows[
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where ai, i ∈ {0, .., 7} are transformation parameters, while f tx and f ty correspond to image coor-
dinates of a feature at time t. In order to determine the most suitable transformation parameters,
the least square error is minimized

J =
1

2

N∑
i=1

||f ti −W(f t−1i )||, (2)

whereW represents a transformation rule and N corresponds to the size of the feature set. Since
some features correspond to dynamic objects, the optical flow is caused by both ego-motion and
moving objects. Therefore, in the vein of [1], the following procedure is used

• estimate the initial transformation W0,

• divide the feature set into two subsets by:{
fi ∈ Fin if ||f ti −W(f t−1i )|| < ε

fi ∈ Fout otherwise ,
(3)

• re-estimate the transformation W using only Fin subset.

This approach relies on the assumption that the ego-motion causes dominant optical flow. Once
having the tranformation estimated, the previous image can be warped into the current moment
in time

It−1→t =Wt−1→t(It−1) ≈ It. (4)

Warped image It−1→t corresponds approximatelly to image It−1, taken from the same position
as It. Then the dynamic parts of image at time t are detected after applying image differencing
between images It−1→t and It. Such image of differences is then divided into regions of size
16× 16 pixels, whereas the mean level of difference is determined for each region. This mean can
be considered as the amount of dynamics within the region. After applying a threshold, every
region is declared as being either static or dynamic. Dynamic regions are then clustered, based
on the Euclidean distances within the image.

Since every two contiguous cameras have an overlapping field of view, some objects might
be recognized in two images. Therefore, at each time step, every detection is projected on the
unit sphere, whence some detections are clustered together due to previous argumentation. An
example of the detection process is shown in Fig. 1.



Fig. 1: A snapshot of the detection process. The uppper most image shows the concatenated
images from the cameras. The middle image shows the result after subtracting the image It
captured at time t from the warped image It−1→t captured at time t − 1. The bottom image
shows the detected motion inside of a white bounding box.

3 Tracking on the unit sphere

3.1 The von Mises-Fisher distribution

The von Mises-Fisher distribution serves as an all-purpose probability model for directions in
space and directional measurement errors [14]. When considering directions in p dimensions, i.e.
unit vectors in p dimensional Euclidean space Rp, one can represent them as points on Sp−1, i.e.
the p−1 dimensional sphere with unit radius and center at the origin. In other words, a p-sphere
is defined as a set of points in (p+ 1) dimensional Euclidean space, hence a 1-sphere is the circle
and the 2-sphere is the surface of a ball in three-dimensional space. A three-dimensional unit
random vector x is said to have a von Mises-Fisher distribution f (µ, κ) if its probability density
function (pdf) is of the following form [15]

p(x;µ, κ) =
κ

4π sinhκ
exp

(
κµTx

)
, x ∈ S2, (5)

where µ, also a unit vector (||µ|| = 1), is the mean direction, κ is the concentration parameter
and S2 is the unit 2-sphere. Because (5) is symmetrical about µ, the mean direction of x is



µ. For κ > 0, the distribution has a mode at the mean direction µ, whereas when κ = 0 the
distribution is uniform. The larger the κ the greater the clustering around the mean direction.
Since (5) depends on x solely through µTx, the vMF is rotationally symmetric about µ.

The von Mises-Fisher distribution, like many well known parametric distributions (Gaussian,
Poisson, Gamma, Dirichlet etc.), is an exponential family [16]. A parametric set of probability
distributions defined on a sample space X and parametrized by the natural parameter θ ∈ Θ is
called exponential family if their probability densities admit the following canonical representa-
tion

p(x; θ) = exp(T (x) · θ − F (θ) + C(x)), x ∈ X . (6)

T (x) is called the minimal sufficient statistics, and functions F and C denote the log-normalizer
and the carrier measure, respectively. It can be readily checked that the vMF distribution f (µ, κ)
defined by (5) with standard parameters µ and κ, is an exponential family parametrized by the
natural parameter θ = κµ,θ ∈ R3. The minimal sufficient statistics is T (x) = x, the log-
normalizer is given by F (θ) = log 4π sinh(κ)/κ, and the carrier measure is trivial C = 0.

3.2 Bayes tracker based on the vMF distribution

Since our goal is to track motion on the sphere, we proceed further by posing the problem as
an estimation on a sphere thus devising a Bayesian state estimator (tracker) based solely on the
vMF distribution [17,18]. A Bayesian estimation procedure of the a posteriori pdf consists of two
steps: prediction and update [19], which in this case entails representing the state to be estimated
xt at time t as the vMF distribution and successively predicting and updating this distribution.
The prediction step involves calculating the pdf via the total probability theorem

p(xt | z1:t−1) =

∫
p(xt |xt−1)p(xt−1 | z1:t−1)dxt−1. (7)

In this case we do not have a strict state evolution model, but we choose to add process noise
governed by a centered vMF in the prediction stage which amounts to convolving our posterior
at time t − 1 with the vMF distribution representing the process noise. Let us assume that the
prior state at t−1 is represented by a vMF distribution f (µt−1, κt−1) and that the motion model
is represented by a vMF distribution centered at µt−1 but with concentration parameter κ

Q
. The

result of (7) would not produce an another vMF distribution, but the result of this operation
can be well approximated by a vMF with a suitably chosen value of the resulting κt|t−1 [15, 17]

κt|t−1 = A−1(A(κt−1)A(κ
Q

)), A(κ) =
1

tanhκ
− 1

κ
. (8)

Consequently, after the prediction step our state represented by a single vMF will have unchanged
mean direction, µt|t−1 = µt−1, but newly calculated concentration parameter via (8).

In the update step, the posterior at time t is calculated via the Bayes theorem

p(xt | z1:t) =
p(zt |xt)p(xt | z1:t−1)

p(zt | z1:t−1)
. (9)

The sensor model p(zt |xt) is represented by a vMF distribution f (zt, κR
) centered at the de-

tected moving objects in the image after being lifted to unit sphere, while the predicted state
p(xt | z1:t−1) will be the result of the previously discussed (7). Given these two vMF distributions,
f (zt, κR

) and f (µt|t−1, κt|t−1), the result of the update step is a vMF distribution f (µt|t, κt|t)



with the following parameters [17]

κt|t =
√
κ2t|t−1 + κ2

R
+ 2κt|t−1κR

(µt|t−1 · zt)

µt|t =
κt|t−1µt|t−1 + κ

R
zt

κt|t
.

(10)

The two steps, governed by (8) and (10), will cyclically produce the estimate of the direction of
the moving object. Methods for practical calculation of some of the aforementioned equations
can be found in [20]. We have used this recursion in [18] in order to track a single moving object
in the omnidirectional image acquired by a perspective camera with a fish-eye lens and to follow
the object by visual servoing, but in the same paper the problems of multiple target tracking
were not analyzed.

3.3 Validation gate

In multiple target tracking it is often practical to devise a validation gate so as to reject highly
unlikely measurements. This way the computational complexity of the association procedure can
be significantly lowered [6]. In the case of tracking, the validity of a measurement zt can be
calculated by the following expression [21]

p(zt | z1:t−1) =

∫
p(zt |xt)p(xt | z1:t−1)dxt. (11)

If the underlying distribution is Gaussian then (11) produces a Gaussian distribution with the
innovation vector and the innovation covariance matrix as the distribution parameters [21]. In
this paper we propose to solve (11) for the case of the vMF distribution and utilize the result
for validation gating. We can note that the two densities in (11) are exactly the measurement
model and the prediction which yields

p(zt | z1:t−1) =

∫
κt|t−1κR

4π sinhκt|t−1 sinhκ
R

exp{κt|t−1µT
t|t−1xt + κ

R
zTt xt}dxt

=
κt|t−1κR

4π sinhκt|t−1 sinhκ
R

∫
exp{κt|tµT

t|txt}dxt

=
κt|t−1κR

4π sinhκt|t−1 sinhκ
R

4π sinhκt|t

κt|t

∫
κt|t

4π sinhκt|t
exp{κt|tµT

t|txt}dxt

=
κt|t−1κR

sinhκt|t

κt|t sinhκt|t−1 sinhκ
R

.

(12)

The result of the derivation (12) is not a vMF distribution, but analogous to the case of the
distribution on the unit circle, the von Mises distribution [15], we approximate this result with
a vMF density p(zt;µt|t−1, A

−1(A(κ
R

)A(κt|t−1))). For the vMF distribution the approximate
100(1− α)% validation region for zt is [15]

{zt : zTt µt|t−1 ≥ cos δ}, (13)

which defines the intersection of the unit sphere with the cone having vertex at the origin, axis
the mean direction µt|t−1 and semi-vertical angle δ. Given the parameter α, from numerical
tables given in [15] we can define the angle δ, which separates measurements which fall within
the validation region from those that do not. In conclusion, if the scalar product zTt µt|t−1 is
smaller than cos δ then the measurement zt is considered to be inside the validation region and
is taken into account during the association process.



3.4 Data Association

In this paper we solve the data association on the sphere using the GNN and since the method
requires a notion of distance to be calculated between the measurement likelihoods and the
predicted states we propose the following procedure based on statistical distances. Given that,
we derive the Rényi α-divergence [22] for the vMF distribution as a distance which will be used to
determine the measurement-to-track associations. The reason we chose this divergence is because
it is a statistical and information theoretical class of generalized distances which includes cases
such as the Kullback-Leibler (KL) distance and the Bhattacharyya distance. We have used this
divergence in our previous work for reducing the number of the components in a mixture of von
Mises distributions [23]. The Rényi α-divergence is given by the following expression

D
(α)
R (p, q) =

1

α− 1
log

∫
X
p(x)αq(x)1−αdx

and is parametrized by real parameter α, which in the limit α→ 1 yields the KL distance, which
is defined as follows

DKL(p, q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx.

In order to calculate the distance D
(α)
F between two vMF densities, p(x;µp, κp) and q(x;µq, κq)

with their respective parameters θp and θq, we will use the following closed form expressions for
the exponential family of distributions

D
(α)
F (θp, θq) =


1

1− α
J
(α)
F (θp, θq), α ∈ (0, 1),

BF (θq, θp), α = 1,
(14)

where BF denotes the Bregman divergence [24] generated by the convex function F

BF (θq, θp) = F (θq)− F (θp)−∇F (θp) · (θq − θp), θq, θp ∈ Θ (15)

and where J
(α)
F denotes the Jensen α-divergence [25] generated by the convex function F ,

J
(α)
F (θp, θq) = αF (θp) + (1− α)F (θq)− F (αθp + (1− α)θq), θp, θq ∈ Θ.

Bregman divergence is used for the case of α = 1 since BF (θq, θp) = DKL(p, q)—note that the
parameters are in reverse order. For the case of the vMF distribution calculations reveal that for
α ∈ (0, 1)

D
(α)
R (p, q) =

α

1− α
log

4π sinhκp
κp

+ log
4π sinhκq

κq
− 1

1− α
log

4π sinhκpq
κpq

(16)

where κpq = ||αµpκp + (1− α)µqκq|| and that for α = 1, i.e. the KL distance, we have

DKL(p, q) = log
κp sinhκq
κq sinhκp

−
(

1

tanhκp
− 1

κp

)
µT
p

(
κqµq − κpµp

)
. (17)

With having defined the appropriate distance measure between the distributions we can form
a distance matrix Ω = [dij ] whose rows represent the objects currently being tracked and whose
columns represent current measurements and dij is the Rényi α-divergence between the vMF
representing the predicted state and the vMF representing the measurement likelihood. To solve
the assignment problem, we used the Hungarian algorithm [26,27] which yielded the association
matrix having ones at the rows and columns designating the calculated measurement-to-track
association.
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Fig. 3: Estimated azimuth and elevation of the tracked objects on the unit sphere

4 Experiments

4.1 Synthetic data

The synthetic data included multiple moving objects in 3D following a jump-state Markov model.
Basically, each trajectory had a constant velocity but experienced random changes in the azimuth
and elevation angles—the angles either stayed the same or changed ±5◦. Furthermore, the direc-
tion measurements of the trajectories were obtained by adding Gaussian noise to the Cartesian
3D coordinates and then normalizing the noisy vectors to the unit sphere. For the data associa-
tion distance metric we have used the Rényi 1

2 -divergence, i.e. the Bhattacharyya distance, since

it is symmetrical D
( 1
2 )

R (p, q) = D
( 1
2 )

R (q, p). It is also positive definite, but like the other Rényi
α-divergence it does not satisfy the triangle inequality.

To test the algorithm a scene with five moving objects was generated. Estimated directions
on the unit sphere are shown in Fig. 2, while the azimuth and elevations of the trajectories



are shown in Figs. 3a and 3b, respectively. The results show that the algorithm is capable of
associating measurements to tracks so as to track all the moving objects in the scene. However,
with the approach presented in this paper we are estimating only the direction of the objects
without a motion model that predicts the future position. Given that, if two trajectories cross
each other at approximately the same time, the algorithm will associate the measurement that
is probabilistically closest in terms of the previous position. In that case, without taking into
account the history of the motion, it is possible that the identities of two tracks might get
confused. In the given example, this has happened at 34 s and can be more clearly seen in the
azimuth angle in Fig. 3a where the red and blue trajectories were switched after the crossing
happened. This effect is also visible in Fig. 2 where the blue and red trajectories crossed for
the first time—the red trajectory should have continued in the north-east direction instead of
switching to the straight motion to the east of the blue trajectory. Such situations could be
alleviated by probabilistic data association techniques in the vein of [7], multiple hypothesis
tracking in the vein of [28], or data association and track management in the vein of [9] for the
Gaussian mixture PHD filter [10], but this is a subject of future research.

4.2 Real-world data

The real-world data experiment was conducted with the Ladybug R©2 multiple-camera system
mounted on a Pioneer 3DX mobile robot. The scene included two humans walking around the
mobile robot randomly changing the direction while the mobile robot executed rotational and
translational motion during the experiment. Each camera reported an image of 1024x768 pixels
at 7fps which were collected and processed using the Robot operating system (ROS) [29] and
OpenCV [30].

5 Conclusion

In this paper we have proposed a novel method for tracking multiple moving objects on the unit
sphere. The method was tested in a scenario where a multiple-camera system was placed on a
mobile robot and detection of motion was performed by warping images between consequtive
frames and subtracting the same in order to detect motion in each camera image. After the
subtraction each pixel with sufficient intensity representing the motion was lifted to the sphere
where clustering of objects was performed and whose center of gravity yielded measurements
in the form of the vMF distribution. Subsequently, the tracking was performed by a Bayesian
tracker based on the vMF distribution and where the data association was solved by GNN where
the Rényi α-divergence was proposed as a distance metric. Furthermore, in order to alleviate
the complexity of the association process, a validation gate was derived for the vMF filter.
The unlikely measurements were disregarded during assoction but they did participate in the
possible track initialization process which was handled by the M/N logic algorithm. In the end,
the proposed method was tested on a synthetic and real-world data experiments which confirmed
the prospects of the proposed method.
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