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∗University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
‡Automation and Control Institute, Vienna University of Technology, Austria

Email: karla.brkic@fer.hr

Abstract—We consider the problem of 3D object recognition,
assuming an application scenario involving a mobile robot
equipped with an RGB-D camera. In order to simulate this
scenario, we use a database of 3D objects and render partial
point clouds representing depth views of an object. Using the
rendered point clouds, we represent each object with an object
descriptor called temporal ensemble of shape functions (TESF).
We investigate leave-one-out 1-NN classification performance on
the considered dataset depending on the number of views used to
build TESF descriptors, as well as the possibility of matching the
descriptors built using varying numbers of views. We establish
the baseline by classifying individual view ESF descriptors. Our
experiments suggest that classifying TESF descriptors outper-
forms individual ESF classification, and that TESF descriptors
offer reasonable descriptivity even when very few views are used.
The performance remains very good even if the query TESF and
the nearest TESF are built using a differing number of views.

I. INTRODUCTION

3D object recognition is one of the essential tasks in prac-
tical robotics. In order to interact with the world, robots must
be capable of understanding which objects they encounter in
it. Although the objects in reality are three-dimensional, the
dimensionality of the data that a robot perceives depends on
the sensors used to acquire it. In this paper, we assume a
scenario in which a robot is equipped with an RGB-D camera
(e.g. Kinect or an equivalent sensor). The robot moves around
the object of interest, acquiring a number of depth views of the
object, as illustrated in Figure 1. We are interested exclusively
in the depth channel, so the RGB image is discarded. We
have previously proposed [1] a method for integrating multiple
depth views of a 3D object into a single descriptor, called
temporal ensemble of shape functions descriptor (TESF). In
order to build a TESF descriptor, depth information for each
view is represented as a point cloud. These point clouds are
then represented using individual ensemble of shape functions
descriptors (ESF) [2], and individual ESFs are combined to
form TESF descriptors. A TESF descriptor can be built using
an arbitrary number of object views. The resulting descriptor
is always of the same length. Therefore, TESF descriptors
are particularly suitable for object classification in practical
robotics, as a robot can acquire varying numbers of views for
different objects.

In this paper, we build on earlier work with temporal ensem-
bles of shape functions. Previous experiments, detailed in [1],
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Fig. 1: Our application scenario. The robot moves around the
object of interest (in this case, chair) and acquires several
views (in this case, four) using a depth camera. These views
are represented as point clouds.

focused on building TESF descriptors using a fixed number
of object views. In addition, these views were designed to
capture the object from all possible sides. TESF descriptors
proved to be very discriminative, performing equally well or
slightly better than state of the art solutions [3]. Still, some
open questions important in the context of practical robotics
remained:

1) how descriptive are TESF descriptors when built on very
few object views,

2) can a TESF descriptor classifier built using t1 views be
applied on TESF descriptors built using t2 views, t1 6=
t2?

The goal of this work is to provide detailed experiments to
answer these open questions. We do so by adhering to exper-
imental setup from [1], where actual depth data is simulated
using rendered 3D models.

II. RELATED WORK

The problem of 3D object recognition appears in computer
(i.e. robot) vision and in computer graphics. From the com-
puter graphics perspective, the focus is on 3D object retrieval,
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Fig. 2: From object views to TESF descriptors.

i.e. finding 3D objects similar to a query object. From the
computer vision perspective, the focus is on individual real
world 3D object classification.

Combining these two perspectives is becoming increasingly
common, and it is difficult to draw a hard line between
them. For example, Wohlkinger et al. [4] propose a 3D
object recognition framework for depth sensors that is trained
exclusively on CAD models downloaded from the Internet.
Tenorth et al. [5] propose decomposing CAD models of daily
used objects to learn about their functional parts, which could
be useful in robotic applications. Ohbuchi and Furuya [6]
propose a method for retrieving 3D models based on a single-
view query using bags of visual features, which is an idea from
computer vision. Chen et al. propose measuring similarity of
contours extracted from rendered images of models, a purely
computer graphics approach that could easily be generalized to
computer vision. Daras and Axenopoulos [7] introduce a 3D
object retrieval framework that supports multimodal queries
(sketches, images or 3D models). Further details on 3D object
retrieval can be found in a number of surveys, e.g. [8] or [9].

Temporal ensembles of shape functions (TESF descriptors)
[1], used in this paper, are based on ensembles of shape
functions [2] and spatio-temporal appearance descriptors [10].
They combine a single-view object recognition method with
an idea of temporal integration from the domain of video
analysis. They can be readily applied in computer graphics.
When working with real images, however, RGB data itself
is not sufficient, as depth channel is necessary to generate
ensembles of shape functions. Different views of an object are
represented as 3D point clouds, encoded as ensembles of shape
functions and efficiently combined into a single descriptor.
This procedure is illustrated in Figure 2.

III. TEMPORAL ENSEMBLES OF SHAPE FUNCTIONS

To build a TESF descriptor of an object, we assume that
a number of partial point clouds representing the object are
available. In our envisioned application, these partial point

clouds could be obtained e.g. by a Kinect-like sensor, so that
each partial point cloud represents one depth view of the
object as seen by the sensor. Each of these partial views is
first represented using ensembles of shape functions (ESF),
introduced by Wohlkinger and Vincze [2].

A. The ESF descriptor

The basic idea of the ensemble of shape functions descriptor
is to represent a partial point cloud by distributions of values
of characteristic shape functions. Each point cloud represents a
(partial) surface of the object. The descriptor is an extension of
the idea of shape functions, as introduced by Osada et al. [11].

In order to represent the partial point cloud by a characteris-
tic shape function, we randomly sample pairs of points on the
partial point cloud surface and measure their distance. We then
categorize the connecting line segment as lying mostly on the
surface, lying mostly off the surface, or being a combination
of both cases. For each of the cases, we maintain a 64-bin
histogram of recorded distances. For instance, if we measure
point distance of 12.27, and the line segment connecting the
two selected points is lying mostly off the partial surface, then
the value 12.27 will be entered into the histogram for lines
lying off surface.

The described procedure is repeated for randomly sampled
point triplets. However, instead of measuring point distances,
we now measure the area of the spanned triangle, as well
as a predefined angle in the triangle. The triangle is again
characterized as lying mostly on the surface, lying mostly off
the surface, or a combination of both, and the measured area
and angle are entered into the appropriate histogram.

By randomly sampling point pairs and triplets and mea-
suring the obtained distances, areas and angles, we obtain
a total of 9 histograms. Additionally, we measure the ratios
of point triplet line distances, and enter them into another
histogram. This results in a total of 10 64-bin histograms
that are representative of individual partial point clouds. In
order to obtain the ESF descriptor of a partial point cloud, we
concatenate the described ten histograms into a single 640-
dimensional descriptor which is then normalized. Note that the
ESF computation algorithm ensures invariance to translation
and rotation.

In practice, in order to perform the described calculations
we approximate the partial point surface with a voxel grid.
Decisions whether a line or a triangle is on the surface,
off the surface or both are made on the basis of that grid
approximation. Further implementation details can be found
in [2].

B. Integrating individual ESF descriptors

ESF descriptors are built on a per-view basis, meaning
that for t partial views of an object we will obtain t ESF
descriptors. In a real robotics scenario, we would like to
classify the object that the robot is seeing using all available
descriptors. However, most standard classifiers expect a single
fixed-length feature vector as an input, so we need a way to
integrate t ESF descriptors into a single descriptor.
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Fig. 3: Calculating TESF1 and TESF2 descriptors. Given a number of views and their corresponding ESF descriptors (drawn
in orange), TESF1 is obtained by weighted averaging of all the available ESFs. TESF2 is obtained by histogramming each
ESF component (represented here by framing three example components with a rectangle and building a histogram out of the
collected data).

In [1] we proposed two variants of integrating ESF descrip-
tors into a single descriptor, namely

1) Temporal Ensembles of Shape Functions of the First
Order (TESF1), and

2) Temporal Ensembles of Shape Functions of the Second
Order (TESF2).

Let us assume that the robot is moving around the object
and looking at it, so that in each point in time θ we obtain
a view vθ and its corresponding ESF descriptor ESF(vθ). We
now proceed to describe the algorithms for calculating TESF1
and TESF2 descriptors.

C. The TESF1 descriptor

Assume that we wish to build the TESF1 descriptor at the
point in time t. We have already obtained t views of the object
and their corresponding ESF descriptors ESF(vθ), 1 ≤ θ ≤ t.
In order to obtain the TESF1 descriptor from these views, we
simply do a weighted averaging of the t ESF descriptors:

TESF1(t) =

t∑
θ=1

αθESF(vθ). (1)

Factors αθ are arbitrary, and should be set depending on a
particular application. For instance, it might be the case that
all the views are equally relevant, so it makes sense to set
αθ = 1 ∀θ. On the other hand, it might be the case that
we know something important about the way the views were
acquired, for instance that the robot is moving away from the
object. In that particular case it makes sense to decrease the
importance of latter views, e.g. by setting αθ = c

θ , where c is
an arbitrary constant. Different strategies for choosing αθ can
be derived by analogous reasoning.

TESF1 is a simple and effective descriptor [1]. However,
when averaging individual ESF descriptors, a lot of informa-
tion is lost. Two very different sets of ESF descriptors can
produce the same TESF1 descriptor. To address this problem,
we have proposed the TESF2 descriptor.

D. The TESF2 descriptor

The TESF2 descriptor is designed to be more expressive
than TESF1, by explicitly modeling the distribution of ESF
descriptor components over time.

Let us define a component vector, ci(t), as a vector of
values of the i-th component ESF(vθ)[i] of the ESF descriptor
ESF(vθ) up to and including time t, 1 ≤ θ ≤ t:

ci(t) = (ESF(v1)[i], ESF(v2)[i], . . . , ESF(vt)[i])
T
. (2)

For a given point in time t, we will have a total of 640
component vectors ci(t), where 1 ≤ i ≤ 640. There will be
one component vector for each of the 640 components of the
modeled ESF descriptors. In time t, the length of each of these
component vectors will be equal to t.

To obtain the TESF2 descriptor in time t, each of the 640
component vectors is treated as a set of measurements and
modeled with a k-bin histogram. The TESF2 descriptor is a
concatenation of the bin frequencies of all 640 histograms,
which can be written as

TESF2(t) = [Hk(c1(t)),Hk(c2(t)), . . . ,Hk(c640(t))]T .
(3)

The function Hk(c) builds a k-bin histogram of values
contained in the vector ci and returns a vector of histogram
bin frequencies. Given that the individual components of the
grid vector correspond to bins of individual ESF histograms,
TESF2 descriptors can be thought of as building histograms
of the second order, i.e. histograms of histograms.



Figure 3 illustrates the differences in calculating TESF1 and
TESF2 descriptors.

E. Solving the TESF2 binning problem

In practical implementations of the histogramming function
Hk(c), there is a problem in defining bin bounds of the
built histograms. The maximum theoretical value that can be
encountered in the components of an ESF descriptor is 1, as
ESF descriptors are normalized. In practice, ESF descriptor
components are typically of the order of magnitude of 10−3,
given that the normalization is performed over 640 vector
components. Therefore, it makes sense to employ non-linear
binning, in order to increase the binning resolution around
typically encountered values. In our experiments, we employ
the non-linear binning scheme from [1]. Further details on the
binning are omitted from this work, and the interested reader
is referred to [1]

IV. EXPERIMENTS WITH A LIMITED NUMBER OF VIEWS

In order to test the performance of TESF descriptors built
using varying numbers of views, we adhere to the experimental
setup from [1]. To simulate the performance of a Kinect-like
sensor, we use a database of 3D object models and partially
render each model from 20 different angles. The 20 views
are evenly distributed on a sphere around the object, and each
rendered view is assigned an index from 1 to 20. We employ
a 1-nearest neighbor classifier [12] using Euclidean distance
and leave-one-out cross-validation to obtain performance esti-
mates. We use the publicly available implementation of ESF
available in the Point Cloud Library (PCL) [13]. The number
of point-pair and point-triplet samples is set to 40000, and a
64× 64× 64 voxel grid is used.

A. The 3D-Net database

In our experiments, we use a subset of the 3D-Net database
[2]. The considered subset consists of 1267 objects grouped
into 55 classes organized in a hierarchy according to the Word-
Net database [14]. The object classes range from common
household objects to vehicles and animals. A word cloud
visualization of all the used object categories is shown in
Figure 4, and a few example objects in Figure 5.

B. The baseline: individual ESF descriptor matching

The simplest way to classify an object seen from multiple
views is to ignore the fact that the views are related and
to treat each view as an individual observation. In the case
of 1-NN classification, object class is then determined by
comparing a view with a database of all stored views of all
the training objects. Assume that we are using the described
subset of 1267 objects from 3D-Net as our training set and 20
views per object. This effectively means comparing the ESF
descriptor of a view of a new object with 1267× 20 = 25430
stored ESF descriptors. This procedure will be 20 times
slower than analogous matching of TESF1 descriptors and 20

k
times slower than analogous matching of TESF2 descriptors,
where k denotes the number of bins used for building TESF2
descriptors.

Fig. 4: A word cloud visualization of the considered classes
from the 3D-Net database. Word size is proportional to the
number of instances of the given class.

Fig. 5: Examples of objects from the 3D-Net database.

In order to speed up processing, one could consider match-
ing only corresponding views. For example, if we assume
our setup where 20 views are spaced at predefined positions
around the object, view at position 14 of a query object could
be compared only to views at position 14 of all other objects.
The major problem with this kind of setup is that objects in the
3D-Net database are not necessarily equally aligned in the 3D
coordinate system, and their orientation is not known. Taking
the same view of two objects of the same class in the 3D-Net
database might yield quite different surfaces, as illustrated in
Figure 6. Therefore, we instead opt for comparing the ESF



Fig. 6: The same view (view 3) of two different trucks from
the 3D-Net database. The trucks are oriented differently in the
3D space, so viewing them from the same position yields two
different surfaces.

descriptor of a query view with all other views of all other
objects.

To investigate classification performance of individual ESF
descriptor matching, we set up the following experiment. For
each of the 1267 objects in the training set, we consider all
20 views of the object, and try to match each view’s ESF
descriptor with the remaining (1267−1)×20 ESF descriptors
of all views of all other objects.

This kind of matching yields a 1-NN leave-one-out classi-
fication accuracy of 65.99%. In [1], we have shown that by
using TESF1 descriptors on the same problem one obtains
a classification accuracy of 77.03%, and by using TESF2
descriptors a classification accuracy of 82.64%. Hence, using
TESF descriptors we obtain not only faster, but also more
accurate classification.

C. Varying the number of views for query TESFs

Although TESF descriptors perform very well when suf-
ficient number of views is sampled around the object of
interest, there are two essential questions that need to be
addressed when applying TESF descriptors in a practical
robotics scenario: (i) what is the influence of the number of
used views on classification accuracy, and (ii) is this approach
robust to a changing number of views?

As mentioned before, we are assuming that a robot is
moving around an object of interest and acquiring a number
of views of the object. These views are then represented by
their ESF descriptors. The robot need not be able to see the
object from all angles, and the number of acquired views can
vary depending on the situation. Using these views, the robot
builds a TESF descriptor and tries to determine which class the
object belongs to by finding the nearest neighbor to the built
TESF descriptor in its object descriptor database. The object
descriptor database contains precomputed TESF descriptors of
training objects. The stored TESF descriptors need not be built
on the same views as the query descriptor. Both view angles
and the total number of views might differ.

To investigate the robustness of TESF classification to
these changes in views, we vary the number of views used
in building TESF descriptors of query objects and measure
classification performance. At the start of each experiment, we

randomly select n view indices from the rendered 20 views of
objects in the 3D-Net (e.g. when selecting three views, views
3, 6 and 17 might be chosen). When evaluating leave-one-out
classification accuracy, we select individual objects from the
training set and build their TESF descriptors using only the
chosen n view indices. 1-NN classification of these descriptors
is then performed by searching for the nearest TESF descriptor
in the rest of the set. However, for the remainder of the
set (which simulates the object descriptor database of the
robot) we use the full 20-view range TESF descriptors. In
other words, when finding the nearest neighbor the left out
object is represented by a TESF descriptor using n views, and
this descriptor is then compared to TESF descriptors of other
objects built using 20 views to find the closest match. We test
both TESF1 and TESF2 descriptors.

Randomly selecting view numbers can be biased. It is pos-
sible to select very close views, leading to small information
gain over a single view scenario. On the other hand, it is
also possible to select views that are very far apart, which
might not be the case in real robotic scenarios, leading to
overly optimistic classification rates. To alleviate this problem,
we repeat the random selection of views 10 times for each
considered number of views n, and we report the average
obtained classification accuracy and the standard deviation.
Results are summarized in Table I.

Our first observation is that TESF1 descriptors consistently
perform worse than TESF2 descriptors, as is to be expected
given that TESF2 descriptors are more expressive. However,
TESF1 descriptors built using 8 views and above offer an
improvement over individual ESF descriptor matching. For
TESF2, we see that even with using very few views (3), we are
still likely to see an increase in performance over individual
ESF 1-NN classification (although the standard deviation of
performance is quite large). The classification performance
seems to steadily increase as we add more views, and the
standard deviation of the performance drops. As our views are
equally positioned around the object, selecting more and more
views means obtaining more information about the object.
At 8 views the object is already reasonably well represented,
and at 15 views the standard deviation is very small, which
means that regardless of which exact 15 views we choose, the
majority of the surface of the object will be seen and captured
in the resulting TESF descriptor.

D. Building the object descriptor database from fewer views

In previous experiments, we considered matching TESF
descriptors of query objects built using randomly selected 3,
5, 8 and 15 views with an object descriptor database built
using 20 object views. Now, we investigate how classification
performance would change if our object descriptor database
instead contained descriptors built using the same number of
views as the query object. Our goal is to see whether good
classification accuracy can be obtained even if the objects
stored in the database were seen from a limited number of
views, which is s realistic expectation in robotic applications.
To that end, we repeat the experiment described in the previous



Number of views n TESF1 accuracy [%] TESF2 accuracy [%]
1 (ESF) 65.99

3 57.64 (σ = 4.27) 70.19 (σ = 4.10)
5 62.00 (σ = 5.75) 75.94 (σ = 3.09)
8 71.87 (σ = 1.93) 80.64 (σ = 1.14)

15 76.55 (σ = 0.81) 82.09 (σ = 0.46)
20 [1] 77.03 82.64

TABLE I: Influence of the number of views used to build
TESF descriptors on classification accuracy. For each number
of views (3, 5, 8, 15), we randomly select view indices 10
times and run leave-one-out 1-NN cross-validation. Nearest
neighbors are found from an object database of 20-view
TESF2 descriptors. We report mean classification accuracy and
standard deviation over the 10 iterations.

Number of views n Accuracy over 10 runs [%]
3 54.97 (σ = 4.01)
5 66.85 (σ = 7.34)
8 81.31 (σ = 0.61)
15 82.09 (σ = 0.46)

TABLE II: Using an object descriptor database containing
descriptors built from fewer than 20 views. For each number
of views (3, 5, 8, 15), we randomly select view indices 10
times and run leave-one-out 1-NN cross-validation. Nearest
neighbors are found in a database built using the same number
of views as the query objects, but differing in view indices.
We report mean classification accuracy and standard deviation
over the 10 iterations.

section, but this time with an object descriptor database built
using the same number of views as the query: 3, 5, 8 and 15.
Given that TESF2 consistently performed better than TESF1
in previous experiments, this experiment is done with TESF2
descriptors only.

In this experiment, we again measure the leave-one-out
classification accuracy over 10 iterations, randomly selecting
the views used for building the query objects in each iteration.
The object descriptor database is built only once for each
considered number of views, and view indices for building
the object descriptor database are selected randomly (e.g. for
5 views they are 17, 12, 14, 19, and 2).

Results are summarized in Table II. We see that for 3 and 5
views the results are worse than when 20-view descriptors are
used in the object descriptor database, while for 8 and 15 views
the results are quite similar. Adequate accuracy is obtained if
the object descriptor database is built using a sufficient number
of views that need not necessarily include all view angles.
This finding means that TESFs could be useful in scenarios
where learning, i.e. building the object descriptor database, is
conducted on the robot. Assume a robot equipped with some
kind of grasper, for instance a humanoid robot with arms. If
the robot is holding an object in its hand, it cannot see it from
all sides without moving it to the other hand and manipulating
it. However, by simply rotating its hand to obtain more views
of the object, it could learn the object well enough to be able
to classify similar objects later.

V. CONCLUSION AND OUTLOOK

We have shown that TESF descriptors retain a lot of
descriptivity when built using only a few views, and offer
performance increases over simple matching of ESF descrip-
tors. Our method can effectively combine any number of
views into a single descriptor, and the more surface of the
object is covered with the views, the better TESF performs.
TESF descriptors can be compared to one another in a 1-
NN classification setting even if they were built using varying
number of views. This makes them especially interesting in
robotic applications, where the robot sees an object of interest
from a number of views t1, but stores representations of similar
objects built using t2 views, where in general t1 6= t2. Further
analysis should be performed regarding the usability of TESF
descriptors in the worst case scenario, where the robot sees
an object from a limited viewpoint, i.e. from a series of very
close views.
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