

# Consensus-based Decentralized Resource Sharing between Co-located Wireless Sensor Networks

Vana Jeličić, Domagoj Tolić, and Vedran Bilas

University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

vana.jelicic@fer.hr



## **Outline**



- Introduction
- Motivation and contributions
- Problem and proposed solution
- Consensus algorithm
- Experimental setup
- Results
- Conclusions and future work

#### Introduction

- Internet of Things (IoT)
  - Smart buildings, smart cities
- Co-located WSNs
  - stand-alone entities
- Inter-network communication



- Centralized structure (negotiation manager)<sup>1</sup>
- Energy sharing between energy-harvesting WSNs<sup>2</sup>
- All-to-all communication scheme<sup>3</sup>
- 1) De Poorter *et al.*: "A negotiation-based networking methodology to enable cooperation across heterogeneous co-located networks", *Ad Hoc Networks*, 2012.
- 2) Jiang *et al.*: "Opportunistic energy trading between co-located energy-harvesting wireless sensor networks", 1st Int'l Workshop on Energy Neutral Sensing Systems (ENSSys), 2013.
- 3) Landsiedel *et al.*: "Chaos: Versatile and efficient all-to-all data sharing and in-network processing at scale", *11th ACM Conf. on Embedded Networked Sensor Systems (SenSys)*, 2013.

## **Motivation & Contributions**



#### **MOTIVATION:**

- Decentralized inter-network communication
- Energy- and time-efficient (not interfering with main WSN task)

#### **CONTRIBUTIONS:**

- A novel approach for enabling inter-network communication
- A time-limited implementation of the parsimonious consensus algorithm that is induced by changes in the environment
- A theoretical and experimental analysis of consensus algorithm trade-offs

#### **Problem**



- Co-located WSNs with energy-hungry sensors
- Event-driven sensing
- Indirect resource transfer



able and willing to engage in inter-network communication!

## **Proposed solution**



- Focus on consensus-based intra-network communication
  - enable decentralized inter-network communication

- Each node in the network can initiate the consensus algorithm and determines the estimate of the energy state in its network by only communicating with its neighbors in intra-network communication.
- Reduce the time the radio is occupied

# **Consensus algorithm**



- Energy-efficient, fast
- Not interfere with the main task of WSN (detecting and reporting interesting events)
- If network topology contains a directed spanning tree, the nodes  $x_i$  achieve consensus  $||x_i x_j|| \to 0$

$$\dot{x}_i = -K \sum_{j \in N_i} (\hat{x}_i - \hat{x}_j) + \omega_i$$

Consensus (agreement) achieved when all nodes' states  $x_i$  enter  $\mathcal{E}$ -vicinity

## **Used topology**



- Topology discovery
- Communication slots

Partitions (avoid collisions)



#### **Trade-offs**



#### Convergence

- Depends on *τK* product
- Increasing 
   \( \tau \), system is more susceptible to noise 
   \( \rightarrow \) divergence!
- For every *K*, there is a  $au_{\max}$  (boundary of convergence). The larger the *K*, the lower the  $au_{\max}$

## Time-efficiency

– For a fixed K, the convergence rate increases with decreasing  $\tau$ 

## Energy-efficiency

– Energy consumed by a node to reach consensus:

$$E = P_{T\tau}CT\tau$$

#### Challenge:

Choosing parameters ( $\tau$ , K) to satisfy those three conditions!

$$\tau \ge \max\{t_{TX}, t_{RX}\}$$

# **Experimental setup**



- A network of 5 TI eZ430-RF2500 nodes
  - MSP430, CC2500
- 2.2 ms for transmitting/receiving a small packet (24 B)
  - $\rightarrow$  hardware-dependent  $\tau_{\min}$



# **Energy consumption**



$$P_{T\tau} = \frac{1}{T\tau} \left( \sum_{\text{mod } e} P_{\text{mod } e} \cdot t_{\text{mod } e} + \sum_{\text{trans}} P_{\text{trans}} \cdot t_{\text{trans}} \right)$$



#### Results



- Chosen parameters K=1;  $\varepsilon=0.4$
- Different  $\tau$  (from  $\tau_{\min} = 2.2 \text{ ms to } \tau_{\max} = 0.3 \text{ s}$ )
- Time to reach consensus  $t_{conv} = CT\tau$

$$ETF = \frac{Et_{conv}}{\left(Et_{conv}\right)_{\min}}$$





## Results





#### **Conclusions**



- Experimental verification for our topology
- Best performance for  $\tau = 0.1$  s (2% duty cycle)
- Convergence time 3.5 s, energy consumption 36 mJ
- Does not jeopardize the WSN performance

#### Future work

- Time and energy dependence for a range of different initial states and different topologies
- Topology discovery for mobile networks and node loss problems



# Thank you for your attention!

Contact: vana.jelicic@fer.hr

www.unizq.fer.hr/across



Centre of Research Excellence for Advanced Cooperative Systems