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Abstract. Remote desktop connection (RDC) services offer clients ac-
cess to remote content and services, commonly used to access their work-
ing environment. With the advent of cloud-based services, an example
use case is that of delivering virtual PCs to users in WAN environments.
In this paper, we aim to analyze common user behavior when access-
ing RDC services. We first identify different behavioral categories, and
conduct traffic analysis to determine a feature set to be used for classi-
fication purposes. We then propose a machine learning approach to be
used for classifying behavior, and use this approach to classify a large
number of real-world RDCs. Obtained results may be applied in the
context of network resource planning, as well as in making Quality of
Experience-driven resource allocation decisions.
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1 Introduction

Today numerous solutions exist on the market supporting remote desktop con-
nections (RDC), including those provided by Microsoft, Oracle, and Citrix. With
the advent of cloud computing and data centres offering virtual desktop solu-
tions to end users, thin-client solutions are becoming an increasingly popular
mechanism for end users to access and interact with remote content and services
in an easy-to-maintain and cost effective manner.

A key challenge in making such solutions viable from an end user point of view
is meeting the stringent network performance requirements dictating low delays
and high response times [1]. As opposed to a standard, “local” desktop, whereby
user inputs are locally processed and rendered nearly immediately, RDCs require
inputs to be transmitted to a remote computer, processed, and returned to the
thin-client [2]. Consequently, the screen updates and response times become a
critical issue, in particular in WAN environments.

RDC traffic generally corresponds to encrypted video bitmaps exchanged
between a remote virtual PC and a thin-client using a single server port, imposing



challenges in terms of detecting end user tasks and applications that are being
remotely run (e.g., a user editing a document, browsing the Web, or viewing
audio/video content)[3]. RD protocols (e.g., Microsoft Remote Desktop Protocol,
RDP) run over TCP and offer a reliable connection. Different user behaviours
while using RDC (in terms of conducted task or application being used) result
in different traffic characteristics and different impacts of network performance
on user perceived quality [4]. Therefore, a prerequisite in effectively managing
the end user Quality of Experience (QoE) is related to determining the user
behavior in the context of RDC for the purpose of accurately mapping between
QoE and performance indicators (i.e., delay, bandwidth).

In this paper, we focus on detecting user behavior while using RDC based on
employing statistical traffic analysis and machine learning. We compare achieved
results with those reported in related work [3]. Further, going beyond related
work, we apply our proposed approach to real-world RDC traffic traces collected
at the University of Ljubljana to study actual user behavior. Knowledge regard-
ing such traffic characteristics may prove beneficial in making QoE estimations
and resource planning decisions.

The paper is structured as follows. In section 3 we present a traffic classi-
fication algorithm for RDC employing a machine learning approach. In section
4, we use our algorithm to analyze actual user behavior captured in 18.5 GB of
real RDC traces. Section 5 presents concluding remarks and future research.

2 Related Work

Traffic classification.

While approaches such as those based on Deep Packet Inspection have been
commonly used to identify and classify network traffic [5], a key drawback lies in
the fact that traffic may be encrypted, preventing payload analysis. Additional
drawbacks include necessary knowledge regarding payload formats, and potential
government imposed privacy regulations. Approaches based on statistical traf-
fic analysis present a different approach, whereby relevant traffic features (e.g.,
packet length and inter-arrival times) are extracted and analysed to identify a
particular application. Emmert et al. [6] previously reported on traffic patterns
for different types of thin client users when working with popular office appli-
cations such as Microsoft Word, Excel, or PowerPoint. A thorough workload
characterization and modeling (session arrival process, interarrival times, dura-
tion) of RDC traffic was done by Humar et al. [7]. The authors further confirmed
self-similar characteristics of RDC traffic at packet level in [8].

In the past, Machine Learning (ML) algorithms have also been used for traffic
classification purposes [9,10]. Dusi et al. [3] propose a novel approach to RD ap-
plication identification based on IP-level statistical traffic analysis and machine
learning techniques, their goal being to make QoE estimations targeted towards
verifying that Service Level Agreements are met. In their tests, the authors ran
several applications over an RDP connection, categorized as audio (e.g., VLC,
WMP, skype), video (e.g., Flash video, WMP), and data (e.g., Web browsing,



Adobe reader). The authors extracted traffic features (bit rate and packet rate
at IP and TCP levels, TCP payload length, and number of observed packets)
and evaluated different statistical classification techniques in terms of accuracy.
Their results show that on-the-fly application identification for thin-client flows
can achieve over 90 percent accuracy (when applying Support Vector Machines
and Decision Tree algorithms, and considering a window size of 10 s) even when
the testing set includes applications for which their classifier was not trained.

Relation to QoE studies.

Previous research has studied RDC traffic and its relation to user perceived
QoE. The user experience on RDC was quantified by Tolia et al. [11] through
operation response times on different bandwidths (10 and 100 Mbps) and for
different types of office applications (typing, tracking changes, creating slides for
presentation and manipulating photos). Staehle et al. [4] studied how differ-
ent network parameters (packet loss, jitter and delay) influence subjective and
objective QoE in a controlled testbed environment. Further, while Dusi et al.
proposed a mapping between QoE scores and round trip time (RTT) thresholds
for different types of RD applications, a more extensive study addressing the QoE
of remote desktop users was conducted by Casas et al. [2]. In a laboratory study
involving 52 participants, the authors looked to identify relationships between
network performance parameters (i.e., delay, bandwidth) and end user subjective
quality scores for four typical remote desktop tasks found in enterprise scenar-
ios: text typing (e.g., email and document editing), screen scrolling (e.g., web
browsing), drag and drop of images, and menu browsing (e.g., menu selection).
The authors further provide a traffic characterization whereby they constitute
that the four aforementioned tasks present nearly identical traffic patterns in the
uplink, while in the downlink typing sends much less data than the other three
tasks, which share a common packet size behavior. Differences in throughput
are linked with different requirements with regards to sending screen updates.
Given that RDC traffic uses TCP as a transport protocol, network delay has
been found to have the most significant impact on end user QoE.

In this paper, we focus on user behavior prediction for RDC and build on
the work reported by Dusi et al. [3]. Given that their results showed that the
Decision Tree ML algorithm (tested using the freely available WEKA software
[12]) provided very good results in terms of traffic classification accuracy, we
have opted to use this algorithm in our study.

3 User behavior detection based on machine learning

3.1 Methodology

The first step in our work was to train a ML algorithm to classify different types
of RDC behavioral activities, to be subsequently used for the analysis of real
RDC traffic traces. The behavior labelled traces which were used for training
the Decision Tree algorithm were collected at the Department of Telecommu-



nications, Faculty of Electrical Engineering and Computing, University of Za-
greb. The capture was performed on Dell Optiplex 390 computer (configuration:
i3@3,3 GHz, 4GB RAM, ATI Radeon HD 6450) connected to another Dell Op-
tiplex 390 via a 100 Mbit LAN. The behavior categories we have addressed are
as follows:

— idle - no actions for 10 seconds, static screen (desktop image);

— document editing - editing of a word document (including text writing, pic-
ture pasting, text copying etc.);

— browsing - searching for accommodation on the www.booking.com web page;

— audio - listening to a 128bit/s online radio station from www.radio365.com;

— video - watching a 10 minute full-screen movie on www.youtube.com.

The measurements for each of the behavior categories lasted 10 minutes, i.e.,
during those 10 minutes, only a given action was being performed. We note that
previous cited efforts [3, 2] have not considered the category of idle, even though
this is commonly observed in RDC traffic. The reason is that previous efforts
focused either on identifying certain applications being run over an RDC or
studying end user QoE, while our goal is to study overall user behavior exhibited
when using RDCs. Following identification of a number of traffic features to be
used for classification, we conducted a traffic analysis and specified a decision
tree algorithm. We then used our collected traces to train the ML algorithm.
Finally, we validated the algorithm using a validation dataset.

3.2 Traffic feature extraction

Features are attributes of flows calculated over multiple packets, used to train
a ML classifier in associating sets of features with given application types [9].
Behavior labelled traces were processed such that for an epoch (time window)
of 10 seconds, six features were extracted:

— up-link packet number;

— up-link average packet size;

— up-link average bandwidth usage;

— down-link packet number;

— down-link average packet size;

— down-link average bandwidth usage;

By up-link we refer to packets originating from the RDC client, while down-
link refers to packets originating from the RDC server. The reason for choosing
an epoch of 10 seconds is due to the fact that previous research has shown this
approach as providing good results in terms of accuracy [3]. Traffic features were
extracted from the network traffic traces using a custom built Java-based parser.

3.3 Machine learning approach

Following traffic capture, we analyzed the traces to determine different traf-
fic patterns for the identified behavioral categories. With regards to the traffic



characteristics, we note that the most distinguishing feature was found to be the
number of down-link packets. Figure 1 portrays CDFs for packet size in both
uplink and downlink directions, as well as CDF's for bandwidth usage across the
different behavioral categories. In the case of traffic corresponding to the client
being idle, only keep-alive packets were sent from server to client. As a result, we
subsequently classified all traffic with <5 packet/s as idle. Video clearly repre-
sented the most resource demanding traffic, with average bit rates over 7 MBit/s.
We once again note that we used full-screen video. Such high resource demands
resulted in poor video quality in terms of image freezes and jerkiness, linked
also to the fact that TCP usage is not optimized for real-time media. Brows-
ing and editing exhibited highly variable traffic characteristics, with browsing
resulting in higher down-link bandwidth utilization. Nevertheless, we presume
that this is highly dependent on the end user interaction behavior resulting in
screen updates. With regards to audio, we used a 128-bit radio channel and a
static screen, i.e., there was no need for screen updates. We further note that all
behavioral categories exhibit similar up-link characteristics (mostly composed
of ACK packets), as also reported by Casas et al [2]. In the case of video, the
higher bandwidth usage is due to the large number of ACKs being transmitted.
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Fig. 1. Traffic analysis of RDC traces



Having statistically analyzed captured traffic, we used the freely available
WEKA Java library (developed at the University of Waikato, New Zealand) [12].
While the WEKA software contains a large collection of tools for data processing,
machine learning, and data analysis, we focused on support for implementation
of the Decision Tree algorithm (noted in WEKA as J.48). The algorithm we
specified in our study is portrayed in Figure 2, relying on the identified feature
set for classification purposes. During the training phase, the algorithm uses
extracted features from the traffic samples to build the mapping functions from
the samples to the behavior category '. We used the approach proposed in [3] to
split the samples into fixed time epochs (i.e., time windows) of 10 s and extract
the features for each epoch. However, while in [3] the authors use only down-link
traffic for algorithm training, we incorporate also up-link samples.
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Fig. 2. A view of the Decision Tree algorithm used for traffic classification
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Having completed the training phase, we generated an annotated dataset
with the addressed behavioral categories for validation purposes. The accuracy
in terms of correct classification (in terms of epochs) was found to be 78%,

! Interested readers may contact the authors for access to the data samples used for
training purposes.



while the accuracy in terms of correctly classified bytes was found to be 89.7%.
While this is somewhat lower than the accuracy reported by [3], we note that
this may be attributable to the fact that we consider document editing and
web browsing as different categories, whereas the cited authors considered a
general “data” category (including web browsing, Adobe Reader, and Microsoft
Powerpoint). Furthermore, the authors do not consider idle periods in their
traffic classification. Finally, while the authors considered only down-link traffic,
they used an extended feature set for classification purposes as compared to our
set.

4 Analysis of real RDC traces

Following training and validation of the machine learning algorithm, we apply
the algorithm to real RDC traces to study actual user behavior in a real world
scenario (outside of a laboratory environment). To obtain empirical traffic traces,
we collected packet-level traces on a 100 Mbit/s Ethernet link that connects the
Faculty of Electrical Engineering, University of Ljubljana (FE) to the external
Internet, as shown in Figure 3. The traces were collected from Sept. 24!"-Nov.
16" 2012. We used a traffic capturing system on a personal computer running
Linux OS and with a DAG network interface card. The traces were collected,
filtered and stored in .cap format. We focused on the most frequently used RDC
traffic, Microsoft Remote Desktop Protocol, which was recognized by transport
layer (TCP) port numbers, configured to 3389 by default. To manage long traces,
the individual files were limited to 0.5 GB. The traces contain RDC flows gen-
erated by students and staff of the Laboratory of Telecommunications, FE. The
measurement procedure resulted in a total of 37 traffic traces which comprised
18.5 GB of RDC traffic. Each trace consisted of multiple RDCs and correspond-
ing flows. A total of 1364 sessions were established when summarized across all
traces (excluding sessions with a session length less than 10 s).

Switch with
Port Mirroring

DAG 3.7 GE equipped
Traffic measurement system

Fig. 3. Testbed environment for collecting RDC traces at FE, Ljubljana



Figure 4 shows the CDF for the different session lengths that were collected in
the traces. Results show that while the majority of sessions were of short length,
there is a significant portion of longer sessions, some lasting up to multiple days.
This is indicative of the fact that users established RDCs and left them open for
extended periods of time, even though the connections were for the most part
idle.

Figure 5 summarizes the duration of total time that users spent engaged
in the given behaviors across all considered traffic traces. Results clearly show
that for the majority of time (92.91 %), the RDC was idle, indicating that
no end user activity was detected. Document editing (6.14 %) proved to be
the most common activity, with small percentages of time spent browsing (0.89
%) and listening to audio (0.06 %). Throughout the entire collection of traces,
there was no detection of behavior indicating that end users were running video
applications. This supports the assumption that the users involved in this study
generally did not watch video content via a remote desktop connection, most
likely due to both the nature of the tasks that users perform when using RDC,
and also due to poor video quality resulting from network delays. While delay
is not a determining issue in LAN scenarios, the use of RDC services in WAN
scenarios clearly leads to the increased impact of RTT.
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Fig. 4. CDF portraying session lengths for collected traces

5 Conclusions and future work

The conducted study has served to provide insight into the actual behavior users
engage in when using thin client services. The applicability of such results can
be considered in the context of efficient planning and allocation of resources in
a cloud environment, whereby passive monitoring of network traffic can be used
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Fig. 5. Total time users spent engaged in a given behavioral category (logarithmic
scale)

to determine user behavior and make estimations with regards to network re-
source requirements. Further, by relying on studies that have explored QoE for
RDC services [4, 2, 3], behavior detection can be used together with utility func-
tions modeling QoE as a function of network delay and bandwidth for different
types of remote desktop services to make QoE estimations. An example of re-
cent work focused on exploiting RDC application identification using statistical
mechanisms for the purpose of QoE-driven scheduling is discussed in [13].

In our work, we have employed a machine learning approach to study user
behavior, with actual traces collected in an academic setting. Future work will
focus on improving our classification accuracy, and further analyzing additional
real world scenarios, such as those focused on use of thin client services in an
enterprise/business setting.
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