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Abstract— Attaining autonomous flight is an important task
in aerial robotics. Often flight trajectories are not only subject to
unknown system dynamics, but also to specific task constraints.
We are interested in producing a trajectory for an aerial robot
with a suspended load that delivers the load to a destination
in a swing-free fashion. This paper presents a motion planning
framework for generating trajectories with minimal residu al
oscillations (swing-free) for rotorcraft carrying a suspended
load. We rely on a finite-sampling, batch reinforcement learning
algorithm to train the system for a particular load. We find
the criteria that allow the trained agent to be transferred to a
variety of models, state and action spaces and produce a number
of different trajectories. Through a combination of simulations
and experiments, we demonstrate that the inferred policy is
robust to noise and to the unmodeled dynamics of the system.
The contributions of this work are 1) applying reinforcement
learning to solve the problem of finding a swing-free trajectory
for a rotorcraft, 2) designing a problem-specific feature vector
for value function approximation, 3) giving sufficient conditions
that need to be met to allow successful learning transfer to
different models, state and action spaces, and 4) verification
of the resulting trajectories in simulation and to autonomously
control quadrotors.

I. I NTRODUCTION

Unmanned aerial vehicles (UAVs) play an increasing role
in a wide number of missions such as remote sensing,
transportation, and search and rescue missions. Often, a
critical part of a UAV’s role is to carry loads vital to the
mission. For example, cargoes may consist of food and
supply delivery in disaster struck areas, patient transport,
or spacecraft landing. Planning motions for a UAV with a
load is complex because load swing is difficult to control.
However, it is necessary for the safety and success of the
mission.

Helicopters and quadrotors are ideal candidates for au-
tonomous cargo delivery tasks because they are highly ma-
neuverable, holonomic vehicles with the abilities of vertical
takeoff and landing, and single-point hover. However, they
are inherently unstable systems with complicated, nonlinear
dynamics. Furthermore, the added suspended load changes
the dynamics of the system.

Motions with minimal residual oscillations have applica-
tions in construction and manufacturing domains as well.
They are desired for cranes on construction sites and loading
docks [4], or for industrial robots carrying parts through
the plants [18]. Swing-free trajectories for these systemsare
needed for safety concerns for the payload and the environ-
ment. Further, by not having to wait for the oscillation to
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naturally subside, swing-free trajectories improve the overall
throughput of the system and increase the manufacturing
capacity of the plant.

Fig. 1. Quadrotor with a suspended load

Our goal is to find a fast trajectory with minimal residual
oscillations (swing-free) for a rotor craft aerial robot carrying
a suspended load as described in [13]. In addition, swing
control during the flight is desired. We assume that we know
the goal state of the vehicle, and the initial state can be
arbitrary. Furthermore, we assume that we have ablack box
simulator (or a generative model) available, but we make
no assumptions about the dynamics of the systems while
designing the algorithm.

We apply a machine learning approach to obtain a swing-
free trajectory. We learn the task using an approximate
value iteration (AVI) reinforcement learning algorithm. The
value function is parametrized with problem-specific feature
vectors. The learning and trajectory generation are separated
in two distinct phases. In the first phase, we learn the value
function approximation for a particular load. Once the value
function is learned, we can use it to generate any number
of trajectories. These trajectories can have different starting
and ending positions and use different (but compatible)
models (see Figure 2). We find the sufficient criteria to
allow the transfer of the learned, inferred policy to a variety
of situations. We demonstrate that the approach produces a
swing-free trajectory to the desired state regardless of the
starting position, robust to noise.

To verify our approach, we learn a value function ap-
proximation for swing-free flight using a generic holonomic



Fig. 2. Trajectory generation block diagram. The system learns problem-
specific feature vector parametrization of the value function. It queries
a simulator, calculates feature vectors and receives a reward for a state.
Once learned, the value function approximation is passed tothe trajectory
generation to generate number of different trajectories. The module uses the
same feature vectors, but can rely on different simulators to find the best
action in any given state. The produced trajectory is sent toa robot. The
green blocks are external to the learning algorithm and considered to be
unknown.

model of the aerial vehicle with a suspended load as a
simulator. Then we generate trajectories using two models:
the same holonomic model used to learn parameters, and a
noisy holonomic model. We demonstrate that the trajectories
are feasible by using them for autonomous control of a
Hummingbird quadrotor shown in Figure 1 to fly a single
and multi-waypoint flight in a cluttered environment.

The contributions of this work are 1) applying reinforce-
ment learning to solve the problem of finding a swing-free
trajectory for a rotorcraft, 2) designing a rotorcraft UAV
problem-specific feature vector for value function approxi-
mation, 3) giving sufficient conditions that need to be met to
allow successful learning transfer to different models, state
and action spaces, and 4) verification of the resulting trajec-
tories in simulation and to autonomously control quadrotors.

II. RELATED WORK

1) Quadrotor Trajectory Tracking:Schoellig et al. in
[14] use an expectation-maximization learning algorithm
to achieve quadrotor trajectory tracking. They start with a
target trajectory and a simple linear model. Lupashin et al.
[10] apply policy gradient descent techniques to perform
aggressive quadrotor multi-flips that improve over repeated
iterations. They improve upon it in [9] by segmenting the
trajectory into keyframes and learning the parameters for
each segment separately.

2) Quadrotor Swing-free Trajectory Creation:Palunko
et al. successfully applied dynamic programming to solve
swing-free trajectories for quadrotors [13] and [12]. How-
ever, dynamic programming requires that the dynamics of
the system are known ahead of time, and is sensitive to
the accuracy of the model, and the start and goal states.
A machine learning approach doesn’t require the white
box approach to system’s dynamics, and learning doesn’t
need to be repeated when the start state changes. Further,
the reinforcement learning approach is more suitable for
compensating for the accumulated error resulting from model

approximation. Lastly, while dynamic programming requires
pre-calculating each trajectory, the approach presented here
allows us to learn the problem once, and generate any number
of different trajectories with different starting positions using
same value function approximation.

3) Swing-free Trajectories in Manufacturing:Swing-free
trajectories have been studied outside of the UAV domain.
They are important in industrial robotics with applications
such as cranes in construction sites and for cargo loading
in ports [4], [18]. Residual oscillation reduction has applica-
tions in manufacturing environments where parts need to be
transported in a limited space. Zameroski et al. [19] applied
dynamic programming to reduce residual vibrations of a
freely suspended payload.

4) Reinforcement and Transfer Learning:To accomplish
swing-free trajectories for rotorcraft with a suspended load,
we rely on approximate value iteration [5], [7], [16] with
a specifically designed feature vector for value function
approximation. Taylor and Stone [17] propose value function
transfer between the tasks in different state and action spaces
using behavior transfer function to transfer the value function
to the new domain. In this work, we transfer the learned value
function to tasks with state and action space supersets and
changed dynamics, and find sufficient characteristics of the
target tasks for the learning transfer to occur successfully.
We directly transfer the value function, and perform no
further learning. Sherstov and Stone in [15] examine action
transfer between the tasks, learning the optimal policy and
transferring only the most relevant actions for the optimal
policy. We take the opposite approach. To save computational
time, we learn sub-optimal policy on a subset of actions, and
transfer it to the expanded action space to produce a more
refined plan.

McMahan et al. [11] suggested learning a partial policy
for fixed start and goal states. Such a partial policy manages
state space complexity by focusing on states are that more
likely to be encountered. We are interested in finding swing-
free trajectories from different start states, but we do have a
single goal state. Thus, all trajectories will pass near thegoal
state, and we learn the partial policy only in the vicinity of
the goal state. Then, we apply it for any start state.

III. M ETHODS

A. Reinforcement Learning for Swing-Free Trajectories

The approximate value iteration algorithm produces an
approximate solution to a Markov Decision Process in con-
tinuous state spaces with a discrete action set. We approxi-
mate the value function with a linearly parametrized feature
vector. It is in an expectation-maximization (EM) algorithm
which relies on a sampling of the state space transitions,
an estimation of the feature vector parameters, and a linear
regression to find the parameters that minimize the least
square error.

AVI does not directly depend on the time step size. Sim-
ilarly, the algorithm is agnostic to the time it takes to reach
the goal state and to any ordering there might be in the state
space chain. It randomly explores the state space and learns
a function that assigns a scalar representing a quality of a
state. Its running time isO(n·iterations·‖actions‖), where



n is number of samples,iterations number of iterations to
perform, andactions is the size of the discretized action
space.

In our implementation, the state space is a 10-dimensional
vectors of the vehicle’s positionp = (x, y, z), linear velocity
v = (ẋ, ẏ, ż)T , load displacement anglesηL = (φL, θL)

T

and their respective angular speedsη̇L = (φ̇L, θ̇L)
T , where

L is the length of the suspension cable (see Figure 3).

Fig. 3. Load displacement angles for a quadrotor carrying a suspended
load.

The samples are uniformly, randomly drawn from a hyper-
cube centred in the goal state at equilibrium. The action space
is a linear acceleration vectora = [ẍ ÿ z̈]T discretized
using equidistant steps centered around zero acceleration.

The value function V is approximated with a linear combi-
nation of the feature vectorF (s). The feature vector chosen
for this problem consists of four basis functions: squares of
position, velocity magnitude, load distance and load velocity
magnitude relative to the goal state as shown in (1):

Vn(s) = ψTn ∗ F (s)

F (s) = [‖p‖2 ‖(v)‖2 ‖η‖2 ‖η̇‖2]T
(1)

whereψ ∈ R
4.

The reward function penalizes the distance from the goal
state, and the size of the load swing. It also penalizes the
negative z coordinate to provide a bounding box and enforce
that the vehicle must stay above the ground. Lastly, the agent
is rewarded when it reaches equilibrium. The reward function
R(s) = cT r(s) is a linear combination of basis rewards
r(s) = [r1(s) r2(s) r3(s)]

T , weighted with vectorc =
[c1 c2 c3]

T , where:

r1(s) = −‖p‖2

r2(s) =

{

a1 ‖F (s)‖ < ǫ

−‖η‖2 otherwise

r3(s) =

{

−a2 z < 0

0 z ≥ 0

To obtain the state transition function samples, we rely on
a simplified model of the quadrotor-load system, where the

quadrotor is represented by a holonomic model of a UAV
widely used in the literature. Equations (2) and (3) describe
the simulator.g′ = [0 0 g]T is gravity force, l is the
length of the sling, andτ is the length of the time step.

vn+1 = vn + τa; pn+1 = pn + τvn + 0.5τ2a

η̇n+1 = η̇n + τ η̈; ηn+1 = ηn + τ η̇n + 0.5τ2η̈
(2)

where

η̈ =

[

sin θn sinφn − cosφn cos θn sinφnl
−1

− cos θn cosφn 0 cosφn sin θnl
−1

]

(a− g)

(3)

B. Trajectory Generation

An approximated value function induces a greedy policy
that is used to generate the trajectory and control the vehicle.
It is determined bya = argmaxa(ψ

TF (P (state, a))),
where P is the state transition function. The algorithm starts
with the initial state. Then it finds an action that produces
the highest return using an approximated value function. That
action is used to transition to the next state. The algorithm
stops a when the goal is reached or when the trajectory
exceeds a maximum number of steps. Trajectory generation
does not refine the policy with the new information. How-
ever, it still can adapt and find its way to the goal state even
in the presence of noise, as we will see later. The trajectory
generation running time isO(max steps · ‖actions‖).

It is important to note that both AVI and the trajectory
generation are not suitable to be executed on real hardware,
and are strictly simulation algorithms. In the case of AVI, this
is because the random sampling is infeasible on hardware.
One could adapt the algorithm not to do a random sample,
but rather to observe an actual flight if possible, similarly
to how Abbeel et al. approached learning initial helicopter
dynamics [3].

C. Analysis

The value function approximation does not necessarily
need to be numerically close to the true value function.
The Proposition III.1 gives sufficient conditions that the
value function approximation, action state space and system
dynamics need to meet to guarantee a plan that leads to the
goal state.

Proposition III.1. Let s0 ∈ S be a desired goal state in
the planning problem described by MDP (S, A, P, R). If a
functionV : S → R has a unique maximum ins0 ∈ S, and
action space A is such that∀s ∈ S \ {s0}, ∃a ∈ A such that
V (πA(s)) > ǫ+V (s), for someǫ > 0, then for an arbitrary
start states ∈ S, greedy policy with respect to V leads to
the goal states0. In other words,∀s ∈ S, ∃n, πnA(s) = s0.

See Appendix for proof.
Proposition A.1 shows that allψi need to be negative

for the value function V described in (1) to have a unique
maximum. As we will see in the IV-B, the empirical results
show that is the case. These observations lead to several
practical properties of the induced greedy policy that we will
verify empirically:



1) The induced greedy policy is robust to some noise:as
long as there is a transition to a state with a higher value, an
action could be taken and the goal will be attained, although
not optimally. Section IV-B presents the empirical evidence
for this property.

2) The policy is agnostic to the simulator used:The
simulator defines the transition function and along with the
action space defines the set of reachable states. Thus, as
long as the conditions of Proposition III.1 are met, we can
switch the simulators we use. This means that we can train
on a simple simulator and generate a trajectory on a more
sophisticated model that would predict the system better.

3) Learning on the domain subset:As we will show
experimentally in Sections IV-B and IV-C, we can learn the
model on a small subset of the state space around the goal
state, and the resulting policy will work on the whole domain
where the criteria above hold, i.e., where the value function
doesn’t have other maxima. This property makes the method
a good choice for a local planner.

4) Changing action space:Lastly, the action space be-
tween learning and the trajectory generation can change, and
the algorithm will still produce a trajectory to the goal state.
For example, to save computational time, we can learn on
the smaller, more coarse discretization of the action space
to obtain the value function parameters, and generate a
trajectory on a more refined action space which produces a
smoother trajectory. We will demonstrate this property during
the multi-waypoint flight experiment.

Since we are using an approximation to represent a value
function and obtain an estimate iteratively, the question of
algorithm convergence is twofold. First, the parameters that
determine the value function must converge to a fixed point.
Second, the fixed point of the approximator must be close
to the true value function.

Convergence of the algorithm is not guaranteed in the
general case. Convergence is guaranteed if the value function
is a contraction [6]. In our case, the approximator function
is not a contraction. Thus, we will show empirically that the
approximator parameters stabilize. To show that the policy
derived from a stabilized approximator is sound, we will
examine the resulting trajectory. The trajectory needs to be
swing-free at the arrival at the goal state, and be suitable for
the system.

IV. RESULTS

In this section we verify the convergence of the proposed
algorithm as well as its effectiveness in simulation and exper-
iment. Section IV-A assesses the approximate value iteration
convergence. Section IV-B shows the results of trajectory
generation in simulation for the expanded state and action
space. Lastly, Section IV-C presents results of experiments
with the quadrotor in expanded state and action space. The
experiments assess the discrepancy between the simulation
swing predictions and the actual swing encountered during
the flight, and make a comparison between a cubic trajectory
(trajectory where position is a3rd order polynomial function
of time) and our method.

TABLE I

APPROXIMATE VALUE ITERATION ALGORITHM HYPERPARAMETERS.

Parameter 3D Configuration 2D Configuration

γ 0.9
Min action (-3, -3, -3) (-3, -3, 0)
Max action (3, 3, 3) (3, 3, 0)
Action step 0.5 0.05

Min sampling space p = (−1,−1,−1), v = (−3,−3,−3)
η = (−10◦,−10◦), η̇ = (−10,−10)

MAX sampling space p = (1, 1, 1), v = (3, 3, 3)
η = (10◦, 10◦), η̇ = (10, 10)

Sampling Linear Constant (200)
Simulator Holonomic
Frequency 50Hz
Number of iterations 1000 800
Number of trials 100 40

Reward function c1 = 10000, c2 = 750, c3 = 1
a1 = 14, a2 = 10000, ǫ = 0.05

A. Value Function Approximation Learning Results

We run AVI in two configurations: 2D and 3D (see table
IV-A). Both configurations use the same discount parameter
γ < 1 to ensure that the value function is finite. The
configurations also share the simulator, described in (2) and
(3).

The 3D configuration trains the agent with a coarse
three-dimensional action vector. Each direction of the linear
acceleration is discretized in 13 steps, resulting in133 total
actions. In this phase of the algorithm we are shaping the
value function, and this level of coarseness is sufficient.

Farahmand et al. in [8] showed that AVI’s approximation
error decays exponentially with the number of iterations, and
that gradually increasing the sampling with iterations yields
less error as the number of iterations increases. Thus, we
increase sampling linearly with the number of iterations in
the 3D configuration.

To assess the stability of the approximate value iteration,
we ran that AVI 100 times, for 1,000 iterations in the 3D
configuration. Figure 4 shows the trend of the norm of
value parameter vectorψ with respect toL2 norm. We
can see that the‖ψ‖ stabilizes after about 200 iterations
with the mean of3.6117e + 05. The empirical results
show that the algorithm is stable and produces a consis-
tent policy over different trials. A mean value ofψ =
(−86, 290,−350, 350,−1, 430,−1, 160)T, which means that
according to A.1, the value function approximation has a
global maximum.

Figure 5 depicts trajectories with the start state in (-2, -
2, 1) over 100 trials. Although there are slight variations
in duration, all the trajectories are similar in shape and are
consistent, giving us confidence that the AVI converges to the
optimal value. The load initially lags behind as the vehicle
accelerates, but then stabilizes to end in a minimal swing.
We can also see that the swing is controlled throughout the
trajectory, maintaining the swing under10◦ for the duration
of the entire flight.

The 2D configuration uses a finer discretization of the
action space, although only in the x and y directions. There
are 121 actions in each direction, totalling to1212 actions
in the discretized space. We will use this configuration in



the experiments on the quadrotor. This configuration uses a
fixed sampling methodology. Results in [8] show that the
approximation error stabilizes to a roughly constant level
after the parameters stabilize.

B. Simulation Results

We access the quality and robustness of a trained agent in
simulation by generating trajectories from different distances
for two different simulators. The first simulator is a generic
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Fig. 5. Trajectories starting at (-2, -2, 1) for each of the 100 trials of the (a)
vehicle and (b) its load using 3D configuration for training and holonomic
simulator with fine-grain action space for trajectory generation.

holonomic aerial vehicle with suspended load simulator, the
same simulator we used in the learning phase. The second
simulator is a noisy holonomic aerial vehicle simulator,
which adds up to 5% uniform noise to the predicted state.
Its intent is to simulate the inaccuracies and uncertainties of
the real hardware.

We compare the performance of our learned generated
trajectories with model-based dynamic programming (DP)
and cubic trajectories. The cubic and DP trajectories are
generated as described in [13] using the the dynamics model
in (2) and (3) and are of the same duration as corresponding
learned trajectories.

The agent is trained in 3D configuration (see Table IV-A).
For trajectory generation, we use a fine-grain discretized 3D
action spaceA = (−3 : 0.05 : 3)3. This action space is ten
times per dimension finer and contains1213 different actions.
The trajectories were generated at 50Hz with a maximum
duration of 15 seconds. All the trajectories were generated
and averaged over 100 trials.

To assess how well a policy adapts to different starting
positions, we choose two different fixed positions, (-2,-2,1)
and (-20,-20,15), and two variable positions. The variable
positions are randomly drawn from between 4 and 5 meters,
and within 1 meter from the goal state. The last position
measures how well the agent performs within the sampling
box. The rest of the positions are well outside of the sampling
space used for the policy generation, and assess how well the
method works for trajectories outside of the sampling bounds
with an extended state space.

Table IV-B presents the averaged results with their stan-
dard deviations. We measure the end state and the time when
the agent reaches the goal, the percentage of trajectories that
reach the goal state within 15 seconds, and the maximum
swing experienced among all 100 trails. With the exception
of the noisy holonomic simulator at the starting position (-
20,-20,15), all experiments complete the trajectory within
4 cm of the goal, with a swing of less than0.6◦. The
trajectories using the noisy simulator from a distance of 32
meters (-20,-20,15) don’t reach within 5 cm because 11% of
the trajectories exceed the 15-second time limit before the
agent reaches its destination. However, we still see that the
swing is controlled and minimal at the destination approach
even in that case.

The results show that trajectories generated under noisy
conditions take a bit longer to reach the goal state, and
the standard deviation associated with the results is a bit
larger. This is expected, given the random nature of the noise.
However, all of the noisy trajectories reach the goal with
about the same accuracy as the non-noisy trajectories. This
finding matches our prediction from Section III.

The maximum angle of the load during its entire trajectory
for all 100 trials inversely depends on the distance from the
initial state to the goal state. For short trajectories within the
sampling box, the swing always remains within4◦, while for
the very long trajectories it could go up to46◦. As seen in
Figure 5, the peak angle is reached at the beginning of the
trajectory during the initial acceleration, and as the trajectory
proceeds, the swing reduces. This makes sense, given that
the agent is minimizing the combination of the swing and



distance. When very far away from the goal, the agent will
move quickly towards the goal state and produce increased
swing. Once the agent is closer to the goal state, the swing
component becomes dominant in the value function, and the
swing reduces.

Figure 6 shows the comparison of the trajectories with
the same starting position (-2, -2, 1) and sameψ parameter,
generated using the models above (AVI trajectories) com-
pared to cubic and DP trajectories. First, we see that the
AVI trajectories share a similar velocity profile (Figure 6
(a)) with two velocity peaks, both occurring in the first half
of the flight. Velocities in DP and cubic trajectories have
a single maximum in the second half of the trajectory. The
resulting swing predictions (Figure 6 (b)) show that in the last
0.3 seconds of the trajectory, the cubic trajectory a exhibits
swing of 10◦, while the DP trajectory ends with a swing of
less than5◦. Our trajectories are within2◦ in the same time
period.
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Fig. 6. Trajectories of the (a) vehicle and (b) its load wherethe training
was performed in 3D configuration and the trajectories were generated using
generic and noisy holonomic simulators compared to the cubic and dynamic
programming trajectories of the same duration.

C. Experimental Results

1) Setup: The experiments were performed using the
MARHES multi-aerial vehicle testbed. This testbed and its

real-time controller are described in detail in [12]. We first
trained an agent in 2D configuration (see Table IV-A). Once
the agent was trained, we generated trajectories for two
experiments: flight with a single waypoint, and with a multi-
waypoint flight.

To generate trajectories, we used a fine-grain discretized
3D action spaceA = (−3 : 0.05 : 3)3. The trajectories were
generated at 50Hz using the generic holonomic aerial vehicle
carrying a suspended load simulator, the same simulator that
was used in the learning phase.

These trajectories were sent to the quadrotor with a sus-
pended load weighing 45 grams on a 62 cm-long suspension
cable. The vehicle and load positioning was tracked by the
Vicon Positioning System [2].

2) Single-waypoint experiment:In flight with a single
waypoint, the quadrotor flew from (-1,-1,1) to (1,1,1). Figure
9 compares the vehicle and load trajectories for a learned
trajectory as flown and in simulation, with cubic and DP
trajectories of the same length and duration. The vehicle
trajectories in Figure 9 (a) suggest a difference in the velocity
profile, with the learned trajectory producing a slightly
steeper acceleration between 1 and 2.5 seconds. The learned
trajectory also contains a 10 cm vertical move up toward the
end of the flight.

Comparison with Simulation:Looking at the load trajecto-
ries in Figure 9 (b), we notice the reduced swing, especially
in the second half of the load’sφ coordinate. The trajectory in
simulation never exceeds10◦, and the actual flown trajectory
reaches the maximum at12◦. Both learned load trajectories
follow the same profile with two distinct peaks around 0.5
seconds and 2.2 seconds into the flight, followed by a rapid
swing control and reduction to under5◦. The actual flown
trajectory naturally contains more oscillations that the sim-
ulator didn’t model for. Despite that, the limits, boundaries,
and the profile of the load trajectory are close between the
simulation and the flown trajectory. This verifies the validity
of the simulation results: the load trajectory predictionsin
the simulator are reasonably accurate.

Comparison with Cubic:Comparing the flown learned
trajectory with a cubic trajectory, we see a different swing
profile. The cubic load trajectory has higher oscillation, four
peaks within 3.5 seconds of flight, compared to three peaks
for the learned trajectory. The maximum peak of the cubic
trajectory is14

◦

at the beginning of the flight. The most
notable difference happens after the destination is reached
during the hover (after 3.5 seconds in Figure 9 (b)). In this
part of the trajectory, the cubic trajectory shows a load swing
of 5 − 12◦, while the learned trajectory controls the swing
to under4◦.

Comparison with DP:Figure 9 (b) shows that load for the
trajectory learned with reinforcement learning stays within
the load trajectory generated using dynamic programming at
all times: during the flight (the first 3.4 seconds) and the
residual oscillation after the flight.

3) Multi-waypoint experiment:In the second set of exper-
iments, the same agent was used to generate multiple trajec-
tories to perform a multi-waypoint flight and demonstrate the
ability to perform a more complex flight pattern in a cluttered
environment based on a single learning. The flight consists of



TABLE II

SUMMARY OF TRAJECTORY RESULTS FOR DIFFERENT STARTING POSITION AVERAGED OVER100TRIALS: PERCENT COMPLETED TRAJECTORIES

WITHIN 15 SECONDS, TIME TO REACH THE GOAL, FINAL DISTANCE TO GOAL, FINAL SWING, AND MAXIMUM SWING .

State Goal reached t (s) ‖ p ‖ (m) ‖ η ‖ (◦) max ‖ η ‖ (◦)
Location Simulator (%) µ σ µ σ µ σ µ σ

(-2,-2,1) Generic Holonomic 100 6.13 0.82 0.03 0.01 0.54 0.28 12.19 1.16
Noisy Holonomic 100 6.39 0.98 0.04 0.01 0.55 0.30 12.66 1.89

(-20,-20,15) Generic Holonomic 99 10.94 1.15 0.04 0.01 0.49 0.33 46.28 3.90
Noisy Holonomic 89 12.04 1.91 0.08 0.22 0.47 0.45 44.39 7.22

((4,5),(4,5),(4,5)) Generic Holonomic 100 7.89 0.87 0.04 0.01 0.36 0.31 26.51 2.84
Noisy Holonomic 100 7.96 1.11 0.04 0.01 0.44 0.29 27.70 3.94

((-1,1),(-1,1),(-1,1)) Generic Holonomic 100 4.55 0.89 0.04 0.01 0.33 0.30 3.36 1.39
Noisy Holonomic 100 4.55 1.03 0.04 0.01 0.38 0.29 3.46 1.52

nine segments, covering different altitudes, see Figure 7.The
clutter placed in the environment (Figure 8) deflects the rotor
wind and affects the load swing. The high-resolution flight
video is available at [1]. Note that the trajectories generated
for this experiment used value approximator parameters that
were learned on a 2D action space, in the xy plane, and
produced a viable trajectory that changes altitude.

The experiment was performed three times and the result-
ing quadrotor and load trajectories are depicted in Figure
10. During the first 10 seconds of the flight, the quadrotor
hovers and the swing is within5◦. At the very beginning of
the flight (seconds 10 to 20), the swing is maximal, staying
within 15◦. In the last phase of the flight, the swing reduces
to within 10◦, and at the very end of the trajectory (seconds
40 to 45) it reduces to the nominal swing within5◦ although
the aircraft is still moving.
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Fig. 7. Trajectory of the multi-waypoint flight.

V. CONCLUSIONS

In this work, we presented a motion planning framework
for producing trajectories with minimal residual oscillations
for a rotorcraft UAV with a freely suspended load. The
framework relies on reinforcement learning to learn the
problem characteristics for a particular load. We found
conditions that if met allow the learned agent to be applied
to produce a wide variety of trajectories. We discussed the
learning convergence, assessed the produced motion plans
in simulation, and their robustness to noise. Lastly, we
implemented the proposed algorithm on a quadrotor type
UAV in order to demonstrate its feasibility and to assess
the accuracy of the simulation results.

Fig. 8. Quadrotor completing the multi-waypoint flight in the cluttered
environment.
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Fig. 9. Quadrotor (a) and load (b) trajectories as flown, created through
learning compared to cubic, dynamic programming, and simulated trajecto-
ries.
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APPENDIX

Proof of Proposition III.1

Proof. For simplicity, let’s denote withVn = V (πnA(s)), the
value of thenth step when applying the greedy policyπA
with respect to the action space A.

Let V0 = V (s0), be the single maximum of function V.
Then sinceV0 is finite there∃k ∈ N s.t. V1 + (k − 1)ǫ ≤
V0 < V1 + kǫ, whereV1 = V (s) is the value of the initial
state.

Notice that becauseV (πA(s)) > ǫ + V (s) ⇒ Vn > (n−
1)ǫ+ V1. Thus, for an arbitrary stepn: ‖V0 − Vn‖ ≤ ‖V0 −
(n− 1)ǫ− V1‖ ≤ ‖kǫ− (n− 1)ǫ‖ = ‖(k − n+ 1)ǫ‖.

For n0 = k + 1 ⇒ V0 = Vn0
.

Proposition A.1. V has a single maximum- Value
function approximationV (s) = ψT ∗ F (s), F (s) =
(‖p‖2, ‖(v)‖2, ‖η‖2, ‖η̇‖2)T , has a single extrema if all
components of the vectorψ are of the same sign. If all
components ofψ are negative, the extrema is maximum.

Proof. By solving dV
ds

= 0,and ensuring that,d
2V
ds2

is negative

definite. dV
ds

= 2
[

ψ1p ψ2v ψ3η ψ4η̇
]T

. Thus,

dV

ds
= 0 ⇔ ‖ψ‖ 6= 0 ∧ s0 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]T .

(A.4)

d2V
ds2

= 2

[

ψ1 0 0 0

0 ψ2 0 0

0 0 ψ3 0

0 0 0 ψ4

]

. s0 is a unique extrema iffψi 6=

0, and d2V
ds2

is a negative definite matrix only if allψi ≤ 0.
Learning in both Configurations described in IV-A, resulted
in negativepsi vector for all 100 trials.


