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Abstract— Attaining autonomous flight is an important task  naturally subside, swing-free trajectories improve therail

in aerial robotics. Often flight trajectories are not only subject to throughput of the system and increase the manufacturing
unknown system dynamics, but also to specific task constratis. capacity of the plant

We are interested in producing a trajectory for an aerial robot '
with a suspended load that delivers the load to a destination
in a swing-free fashion. This paper presents a motion planmig
framework for generating trajectories with minimal residu al
oscillations (swing-free) for rotorcraft carrying a suspended
load. We rely on a finite-sampling, batch reinforcement leaning
algorithm to train the system for a particular load. We find
the criteria that allow the trained agent to be transferred to a
variety of models, state and action spaces and produce a nureb
of different trajectories. Through a combination of simulations
and experiments, we demonstrate that the inferred policy is
robust to noise and to the unmodeled dynamics of the system.
The contributions of this work are 1) applying reinforcement
learning to solve the problem of finding a swing-free trajecbry
for a rotorcraft, 2) designing a problem-specific feature vetor
for value function approximation, 3) giving sufficient condtions
that need to be met to allow successful learning transfer to
different models, state and action spaces, and 4) verificaitn
of the resulting trajectories in simulation and to autonomausly
control quadrotors.

I. INTRODUCTION

Unmanned aerial vehicles (UAVS) play an increasing rolg p -
in a wide number of missions such as remote sensing,
transportation, and search and rescue missions. Often, a Fig. 1. Quadrotor with a suspended load
critical part of a UAV's role is to carry loads vital to the
mission. For example, cargoes may consist of food and

supply delivery in disaster struck areas, patient trarspor < ijiations (swin . .
. > X . g-free) for a rotor craft aerial robotryang
or spacecraft landing. Planning motions for a UAV with el suspended load as described in [13]. In addition, swing

Ead IS co_TpIex because floa(tjhswmtf:] tls d|f2|cult to Cont;Otlcontrol during the flight is desired. We assume that we know
m(i)sV;iec\)/rsr’ IL1S necessary for Iné sately and success o IiWe goal state of the vehicle, and the initial state can be

Helicopt d drot deal didates f arbitrary. Furthermore, we assume that we hawdaak box
elicopters and quadrolors are ideal candidatés Tor gy, 510y (or a generative model) available, but we make
tonomous cargo delivery tasks because they are highly

. . . . 0 assumptions about the dynamics of the systems while
neuverable, holonomic vehicles with the abilities of \eti designing ?he algorithm y Y
takeoff and landing, and single-point hover. However, they . . : .
are inherently unstable systems with complicated, noatine We apply a machine learning approach to obtain a swing

) free trajectory. We learn the task using an approximate
dynamics. _Furthermore, the added suspended load changgﬁje iteration (AVI) reinforcement learning algorithmhd
the dynamics of the system.

value function is parametrized with problem-specific featu

. MOt.'onS with m|_n|mal residual oscnl_atlons ha\_/e applica- ectors. The learning and trajectory generation are stgghra
tions in construction and manufacturing domains as wel

. ) . h two distinct phases. In the first phase, we learn the value
They are desired for cranes on construction sites and Igadi nction approximation for a particular load. Once the ealu
docks [4], or for industrial robots carrying parts throughfu X

the plants [18]. Swing-free trajectories for these syst nction is learned, we can use it to generate any number
P : 9 . ystares ¢ trajectories. These trajectories can have differentista
needed for safety concerns for the payload and the enviro

; X - Mrd ending positions and use different (but compatible)
ment. Further, by not having to wait for the oscillation tomoolels (see Figure 2). We find the sufficient criteria to
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Our goal is to find a fast trajectory with minimal residual



T approximation. Lastly, while dynamic programming reqsire
vector . .
pre-calculating each trajectory, the approach presentee h

Il allows us to learn the problem once, and generate any number
[P of different trajectories with different starting positi® using
I same value function approximation.
poproximate | GRS | Traectory | BEC ) RO 3) Swing-free Trajectories in Manufacturin@wing-free
feleliation Parameterization Bepeztiay Execution H . H H H
trajectories have been studied outside of the UAV domain.
f They are important in industrial robotics with applicaton
such as cranes in construction sites and for cargo loading
Simulator Reward Simulator in ports [4], [18]. Residual oscillation reduction has apa!
| i l tions in man_ufact_uri_ng environments whe_re parts need to be
Generic Noisy Linear transported in a limited space. Zameroski et al. [19] applie
Holonomic | | Holonomic | | Dynamics dynamic programming to reduce residual vibrations of a
freely suspended payload.
Fig. 2. Trajectory generation block diagram. The systermkegroblem- 4) Reinforcement and Transfer Learningo accomplish

specific feature vector parametrization of the value famctilt queries . . . .
a simulator, calculates feature vectors and receives ardefos a state. SWing-free trajectories for rotorcraft with a suspendealo

Once learned, the value function approximation is passetiedrajectory we rely on approximate value iteration [5], [7], [16] with

generation to generate number of different trajectorié® module uses the i ; ;
same feature vectors, but can rely on different simulatorfind the best a SPeCIflca”y deSIQned feature vector for value function

action in any given state. The produced trajectory is serd tobot. The ~a@pproximation. Taylor and Stone [17] propose value fumctio
green blocks are external to the learning algorithm andidered to be transfer between the tasks in different state and actiocespa

unknown. using behavior transfer function to transfer the value fiomc

to the new domain. In this work, we transfer the learned value

function to tasks with state and action space supersets and
nanged dynamics, and find sufficient characteristics of the
rget tasks for the learning transfer to occur succegsfull

directly transfer the value function, and perform no

model of the aerial vehicle with a suspended load as
simulator. Then we generate trajectories using two model
the same holonomic model used to learn parameters, an

noisy holonomic model. We demonstrate that the trajeciong, e learning. Sherstov and Stone in [15] examine action

are feasﬂr;)lg dby ugm? the;]m for. atlit.onom(l)uts :c:lontrol_ Ofl ftansfer between the tasks, learning the optimal policy and
ummingbird quadrotor shown in Figure . 1o fly a sing etransferring only the most relevant actions for the optimal

and multi-waypoint flight in a cluttered environment. policy. We take the opposite approach. To save computdtiona

The contributions of this work are 1) applying relnforce'time, we learn sub-optimal policy on a subset of actions, and

ment learning to solve the problem of finding a SW'ng'fre‘?ransfer it to the expanded action space to produce a more

trajectory for a rotorcraft, 2) designing a rotorcraft UAV.refined plan.

problem—spgc_ific feat_u_re vector_f_or value function approxi McMahan et al. [11] suggested learning a partial policy
m"atlon, 3) gIVIPgl Isufﬁc!enttcondfnlor;s :jhgt neetd to(;)el me: @or fixed start and goal states. Such a partial policy manages
allow successtul learning transfer to difierent modelafest . space complexity by focusing on states are that more
anq action spaces, and 4) verification of the resulting GFaJeIiker to be encountered. We are interested in finding swing-
tories in simulation and to autonomously control quadr:{ntorfree trajectories from different start states, but we doehav

Il. RELATED WORK single goal state. Thus, all trqjector_ies will pass neagtb_m
state, and we learn the partial policy only in the vicinity of

1) Quadrotor Trajectory Tracking:Schoellig et al. in rﬁhe goal state. Then, we apply it for any start state.

[14] use an expectation-maximization learning algorith
to achieve quadrotor trajectory tracking. They start with a I1l. M ETHODS
target trajectory and a simple linear model. Lupashin et al. . . _ : .
[10] apply policy gradient descent techniques to perforrﬁ" Reinforcement Learning for Swing-Free Trajectories
aggressive quadrotor multi-flips that improve over repgtate The approximate value iteration algorithm produces an
iterations. They improve upon it in [9] by segmenting theapproximate solution to a Markov Decision Process in con-
trajectory into keyframes and learning the parameters fdinuous state spaces with a discrete action set. We approxi-
each segment separately. mate the value function with a linearly parametrized featur

2) Quadrotor Swing-free Trajectory CreationPalunko vector. It is in an expectation-maximization (EM) algonth
et al. successfully applied dynamic programming to solvevhich relies on a sampling of the state space transitions,
swing-free trajectories for quadrotors [13] and [12]. How-an estimation of the feature vector parameters, and a linear
ever, dynamic programming requires that the dynamics aégression to find the parameters that minimize the least
the system are known ahead of time, and is sensitive gmuare error.
the accuracy of the model, and the start and goal states.AVI does not directly depend on the time step size. Sim-
A machine learning approach doesn’t require the whitdarly, the algorithm is agnostic to the time it takes to teac
box approach to system’s dynamics, and learning doesittie goal state and to any ordering there might be in the state
need to be repeated when the start state changes. Furtlspace chain. It randomly explores the state space and learns
the reinforcement learning approach is more suitable fa function that assigns a scalar representing a quality of a
compensating for the accumulated error resulting from rhodstate. Its running time i©(n-iterations- ||actions||), where



n is number of samplesterations number of iterations to quadrotor is represented by a holonomic model of a UAV
perform, andactions is the size of the discretized actionwidely used in the literature. Equations (2) and (3) describ
space. the simulator.g’ = [0 0 g]|” is gravity force,l is the

In our implementation, the state space is a 10-dimensioniaihgth of the sling, and is the length of the time step.
vectors of the vehicle’s positiop = (z, y, 2), linear velocity

v = (i,9,%)7, load displacement angleg, = (¢r,0.)" Unit = Uy + TG Dot = po -+ TUn + 0.57%

and their respective angular speefls= (¢r,,0.)", where . . . . 5. (@
L is the length of the suspension cable (see Figure 3). M1 = Np + T1; N1 = Nn + 71 + 0.5777)
where
sin @, sin ¢,, —cosp, cosb,sing,l " (a—g)
— cos By, cos ¢, 0 oS ¢y, sin 0,171 g
3)

B. Trajectory Generation

An approximated value function induces a greedy policy
that is used to generate the trajectory and control the keshic
It is determined bya = argmaz,(yvT F(P(state,a))),
where P is the state transition function. The algorithmtstar
with the initial state. Then it finds an action that produces
the highest return using an approximated value functioat Th
action is used to transition to the next state. The algorithm
stops a when the goal is reached or when the trajectory
Fig. 3. Load displacement angles for a quadrotor carryingispended exceeds a maximum nqmbe_r of steps. TraJeCtory, generation
load. does not refine the policy with the new information. How-

ever, it still can adapt and find its way to the goal state even

The samples are uniformly, randomly drawn from a hyperin the presence of noise, as we will see later. The trajectory
cube centred in the goal state at equilibrium. The actioeespageneration running time i©(max_steps - ||actions||).
is a linear acceleration vectar = [# ¢ |7 discretized It is important to note that both AVI and the trajectory
using equidistant steps centered around zero accelerationgeneration are not suitable to be executed on real hardware,

The value function V is approximated with a linear combi-and are strictly simulation algorithms. In the case of AMist
nation of the feature vectdr(s). The feature vector chosen is because the random sampling is infeasible on hardware.
for this problem consists of four basis functions: squarfes @ne could adapt the algorithm not to do a random sample,
position, velocity magnitude, load distance and load vigfoc but rather to observe an actual flight if possible, similarly

magnitude relative to the goal state as shown in (1): to how Abbeel et al. approached learning initial helicopter
T dynamics [3].
F(s)=[lpl* I@)I* Il 90" C. Analysis _ o _
wherey € R, The value function approximation does not necessarily

. . . need to be numerically close to the true value function.
The reward function penalizes the distance from the go y

tat d the si f the load swi It al i " he Proposition Ill.1 gives sufficient conditions that the
state, and the size of the load swing. 1t also penalizes &6 fynction approximation, action state space and syste

negative z c_oordinate to provide a bounding box and enfor namics need to meet to guarantee a plan that leads to the
that the vehicle must stay above the ground. Lastly, thetag al state

is rewarded when it reaches equilibrium. The reward fumctio
R(s) = cT'r(s) is a linear combination of basis rewardsProposition Ill.1. Let s, € S be a desired goal state in
r(s) = [ri(s) ra(s) r3(s)]”, weighted with vectore = the planning problem described by MDP (S, A, P, R). If a

[e1 co e3]t, where: functionV : S — R has a unique maximum isy € S, and
) action space A is such thafts € S\ {so},3a € A such that
r1(s) = —llpll V(ra(s)) > e+ V(s), for somee > 0, then for an arbitrary
a IF(s)|| < e start states € S, greedy policy with respect to V leads to
r2(s) = |l otherwise the goal statesy. In other words,¥s € S, 3n, 7% (s) = so.
See Appendix for proof.
ra(s) =4 2 7 <0 Proposition A.1 shows that alj; need to be negative
0 220 for the value function V described in (1) to have a unique

maximum. As we will see in the IV-B, the empirical results
show that is the case. These observations lead to several
To obtain the state transition function samples, we rely opractical properties of the induced greedy policy that wig wi
a simplified model of the quadrotor-load system, where theerify empirically:



. - . TABLE |
1) The induced greedy policy is robust to some no&e:
. Ll . . APPROXIMATE VALUE ITERATION ALGORITHM HYPERPARAMETERS
long as there is a transition to a state with a higher value, an

action could be taken and the goal will be attained, althoughparameter | 3D Configuration | 2D Configuration
not optimally. Section 1V-B presents the empirical evidenc™— 0.9
for this property. Min action (-3,-3,-3) (-3,-3,0)
; ; ; ; Max action @3, 3,3) 3,3,0)
2) The policy is agnostic to the simulator usedhe Action step ot CbE

simulator defines the transition function and along with the— : » = (—T,=1,-1), v = (—3,-3,—9)
action space defines the set of reachable states. Thus, 44" sampling space | ° "\ oo " 100) " — (Z10, -10)
long as the conditions of Proposition Ill.1 are met, we can MAX sampling space p=(1,1,1), v = (3,3,3)
switch the simulators we use. This means that we can train n = (10°,10°), n = (10, 10)

on a simple simulator and generate a trajectory on a moreampling Linear | Constant (200)
sophisticated model that would predict the system better. ?'rg‘(;ﬁtr?gy Hoé%rl‘fl’zm'c

3) Learning on the domain subsefAs we will show Number of iterations | 1000 300
experimentally in Sections 1V-B and IV-C, we can learn the Number of trials 100 40
model on a small subset of the state space around the go@eward function c1 = 10000, €2 = 750, c3 = 1

a1 = 14, a2 = 10000, € = 0.05

state, and the resulting policy will work on the whole domain
where the criteria above hold, i.e., where the value functio

doesn’t have other maxima. This property makes the method

a good choice for a local planner. A. Value Function Approximation Learning Results

4) Changing action spaceLastly, the action space be- We run AVI in two configurations: 2D and 3D (see table
tween learning and the trajectory generation can changk, alv-A). Both configurations use the same discount parameter
the algorithm will still produce a trajectory to the goaltsta + < 1 to ensure that the value function is finite. The
For example, to save computational time, we can learn aonfigurations also share the simulator, described in (8) an
the smaller, more coarse discretization of the action spa¢g).
to obtain the value function parameters, and generate aThe 3D configuration trains the agent with a coarse
trajectory on a more refined action space which producestlaree-dimensional action vector. Each direction of thedin
smoother trajectory. We will demonstrate this propertyimyr acceleration is discretized in 13 steps, resulting 34 total
the multi-waypoint flight experiment. actions. In this phase of the algorithm we are shaping the

Since we are using an approximation to represent a valiyalue function, and this level of coarseness is sufficient.
function and obtain an estimate iteratively, the questibn o Farahmand et al. in [8] showed that AVI's approximation
algorithm convergence is twofold. First, the parametess therror decays exponentially with the number of iteratioms| a
determine the value function must converge to a fixed pointhat gradually increasing the sampling with iterationddse

Second, the fixed point of the approximator must be clodéss error as the number of iterations increases. Thus, we
to the true value function. increase sampling linearly with the number of iterations in

Convergence of the algorithm is not guaranteed in th§® 3D configuration. , L
general case. Convergence is guaranteed if the valuedancti 10 assess the stability of the approximate value iteration,
is a contraction [6]. In our case, the approximator functiod/@ ran that AVI 100 times, for 1,000 iterations in the 3D
is not a contraction. Thus, we will show empirically that theconfiguration. Figure 4 shows the trend of the norm of
approximator parameters stabilize. To show that the polic@lue parameter vectop with respect toL, norm. We
derived from a stabilized approximator is sound, we wilt@n see that thei| stabilizes after about 200 iterations
examine the resulting trajectory. The trajectory needseo BVith the mean of3.6117e + 05. The empirical results

swing-free at the arrival at the goal state, and be suitaile fShow that the algorithm is stable and produces a consis-
the system. tent policy over different trials. A mean value af =

(—86,290, —350, 350, —1, 430, —1,160)”, which means that
according to A.1, the value function approximation has a
IV. RESULTS global maximum.
Figure 5 depicts trajectories with the start state in (-2, -
In this section we verify the convergence of the propose®, 1) over 100 trials. Although there are slight variations
algorithm as well as its effectiveness in simulation andeexp in duration, all the trajectories are similar in shape arel ar
iment. Section IV-A assesses the approximate value iterati consistent, giving us confidence that the AVI convergeséo th
convergence. Section IV-B shows the results of trajectorgptimal value. The load initially lags behind as the vehicle
generation in simulation for the expanded state and acti@tcelerates, but then stabilizes to end in a minimal swing.
space. Lastly, Section IV-C presents results of experimeniVe can also see that the swing is controlled throughout the
with the quadrotor in expanded state and action space. Ttrajectory, maintaining the swing undéo® for the duration
experiments assess the discrepancy between the simulatadrthe entire flight.
swing predictions and the actual swing encountered during The 2D configuration uses a finer discretization of the
the flight, and make a comparison between a cubic trajectoagtion space, although only in the x and y directions. There
(trajectory where position is (¢ order polynomial function are 121 actions in each direction, totalling tt21? actions
of time) and our method. in the discretized space. We will use this configuration in




the experiments on the quadrotor. This configuration usesh@lonomic aerial vehicle with suspended load simulatag, th
fixed sampling methodology. Results in [8] show that thesame simulator we used in the learning phase. The second
approximation error stabilizes to a roughly constant levedimulator is a noisy holonomic aerial vehicle simulator,

after the parameters stabilize. which adds up to 5% uniform noise to the predicted state.
Its intent is to simulate the inaccuracies and uncertardfe
B. Simulation Results the real hardware.

We access the quality and robustness of a trained agent in/¥& compare the performance of our learned generated

simulation by generating trajectories from different distes  trajectories with model-based dynamic programming (DP)
for two different simulators. The first simulator is a gegeri @d cubic trajectories. The cubic and DP trajectories are

generated as described in [13] using the the dynamics model
in (2) and (3) and are of the same duration as corresponding
learned trajectories.

The agent is trained in 3D configuration (see Table IV-A).
For trajectory generation, we use a fine-grain discretized 3
action spaced = (—3:0.05: 3)3. This action space is ten
times per dimension finer and contaird? different actions.

LA L LR L N R e IP
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v The trajectories were generated at 50Hz with a maximum
IR duration of 15 seconds. All the trajectories were generated
ey 20) and averaged over 100 trials.
w2, ) . .

N SO i To assess how well a policy adapts to different starting
0 100 200 300 400 500 600 700 800 900 1000 .. . . .
Iterations positions, we choose two different fixed positions, (-21p,

Fig. 4. Convergence of feature parameter veafts norm over 1000 and- -(-20’-20'15)’ and two variable positions. The variable
iterations. The results are averaged over 100 trials. Odetwo standard pOSItIO_nS_ are randomly drawn from between 4 and 5 met_ers,
deviations are shown. After initial learning phagestabilizes to a constant and within 1 meter from the goal state. The last position
value. measures how well the agent performs within the sampling
box. The rest of the positions are well outside of the sangplin
Position Linear Velocity space used for the policy generation, and assess how well the
2 2 method works for trajectories outside of the sampling b@und
with an extended state space.
Table IV-B presents the averaged results with their stan-
6 8 dard deviations. We measure the end state and the time when
the agent reaches the goal, the percentage of trajectbees t
2 2 reach the goal state within 15 seconds, and the maximum
swing experienced among all 100 trails. With the exception
of the noisy holonomic simulator at the starting position (-

X

x (m)
o
v, (m/s)
o

4 6 8 0 2
t(s)

y

y (m)
o
v_ (m/s)
o

2 2 a4 6 s 2 2 4 6 s 20,-20,15), all experiments complete the trajectory withi
tes) tes) 4 cm of the goal, with a swing of less than6°. The
1 2 trajectories using the noisy simulator from a distance of 32
E 05 z o meters (-20,-20,15) don’t reach within 5 cm because 11% of
N0 — -~ the trajectories exceed the 15-second time limit before the
ST s s T R agent reaches its destination. However, we still see thet th
ts) ts) swing is controlled and minimal at the destination approach

even in that case.

_ The results show that trajectories generated under noisy
5o naular speed over fime conditions take a bit longer to reach the goal state, and
the standard deviation associated with the results is a bit
larger. This is expected, given the random nature of theenois
However, all of the noisy trajectories reach the goal with
-50 about the same accuracy as the non-noisy trajectories. This
t(s) finding matches our prediction from Section Il.

The maximum angle of the load during its entire trajectory
for all 100 trials inversely depends on the distance from the
initial state to the goal state. For short trajectories inithe
20 50 sampling box, the swing always remains withit) while for

0 R 0 =) the very long trajectories it could go up #°. As seen in

(b) Fig_ure 5, the_peak a}n_g_le is reache_d at the beginning of the
Fig. 5. Trajectories starting at (-2, -2, 1) for each of th@ 1itals of the (a) trajectory during the initial acceler"?‘tlon’ and as theekr:H;ry
vehicle and (b) its load using 3D configuration for trainingdaholonomic ~ Proceeds, the swing reduces. This makes sense, given that
simulator with fine-grain action space for trajectory getien. the agent is minimizing the combination of the swing and

QD
N

¢ (ls)
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distance. When very far away from the goal, the agent willeal-time controller are described in detail in [12]. We tfirs
move quickly towards the goal state and produce increasé@ined an agent in 2D configuration (see Table 1V-A). Once
swing. Once the agent is closer to the goal state, the switige agent was trained, we generated trajectories for two
component becomes dominant in the value function, and tlexperiments: flight with a single waypoint, and with a multi-
swing reduces. waypoint flight.

Figure 6 shows the comparison of the trajectories with To generate trajectories, we used a fine-grain discretized
the same starting position (-2, -2, 1) and samparameter, 3D action spaced = (-3 : 0.05 : 3)3. The trajectories were
generated using the models above (AVI trajectories) congenerated at 50Hz using the generic holonomic aerial wehicl
pared to cubic and DP trajectories. First, we see that tlearrying a suspended load simulator, the same simulator tha
AVI trajectories share a similar velocity profile (Figure 6was used in the learning phase.

(a)) with two velocity peaks, both occurring in the first half These trajectories were sent to the quadrotor with a sus-
of the flight. Velocities in DP and cubic trajectories havepended load weighing 45 grams on a 62 cm-long suspension
a single maximum in the second half of the trajectory. Theable. The vehicle and load positioning was tracked by the
resulting swing predictions (Figure 6 (b)) show that in thgtl Vicon Positioning System [2].

0.3 seconds of the trajectory, the cubic trajectory a etdhibi 2) Single-waypoint experimenttn flight with a single
swing of 10°, while the DP trajectory ends with a swing of waypoint, the quadrotor flew from (-1,-1,1) to (1,1,1). Figu
less tharb°. Our trajectories are withi@® in the same time 9 compares the vehicle and load trajectories for a learned

period.

Position
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trajectory as flown and in simulation, with cubic and DP
trajectories of the same length and duration. The vehicle
trajectories in Figure 9 (a) suggest a difference in theaigio
profile, with the learned trajectory producing a slightly
steeper acceleration between 1 and 2.5 seconds. The learned
trajectory also contains a 10 cm vertical move up toward the
end of the flight.

Comparison with Simulatiori:ooking at the load trajecto-
ries in Figure 9 (b), we notice the reduced swing, especially
in the second half of the load@coordinate. The trajectory in
simulation never exceed$°, and the actual flown trajectory
reaches the maximum &p°. Both learned load trajectories
follow the same profile with two distinct peaks around 0.5
seconds and 2.2 seconds into the flight, followed by a rapid
swing control and reduction to undéf. The actual flown
trajectory naturally contains more oscillations that tira-s
ulator didn’t model for. Despite that, the limits, boundss;i
and the profile of the load trajectory are close between the
simulation and the flown trajectory. This verifies the vaiidi
of the simulation results: the load trajectory predictioms
the simulator are reasonably accurate.

Comparison with Cubic:Comparing the flown learned
trajectory with a cubic trajectory, we see a different swing
profile. The cubic load trajectory has higher oscillaticoyrf
peaks within 3.5 seconds of flight, compared to three peaks
for the learned trajectory. The maximum peak of the cubic
trajectory is14° at the beginning of the flight. The most
notable difference happens after the destination is rehche
during the hover (after 3.5 seconds in Figure 9 (b)). In this
part of the trajectory, the cubic trajectory shows a loachgwi
of 5 — 12°, while the learned trajectory controls the swing
to under4°.

Comparison with DPFigure 9 (b) shows that load for the
(b) rai : 4 . -
jectory learned with reinforcement learning stays imith
the load trajectory generated using dynamic programming at
all times: during the flight (the first 3.4 seconds) and the
residual oscillation after the flight.
3) Multi-waypoint experimenttn the second set of exper-
. iments, the same agent was used to generate multiple trajec-
C. Experimental Results tories to perform a multi-waypoint flight and demonstrate th
1) Setup: The experiments were performed using thebility to perform a more complex flight pattern in a clutiéére
MARHES multi-aerial vehicle testbed. This testbed and itenvironment based on a single learning. The flight consfsts o

Fig. 6. Trajectories of the (a) vehicle and (b) its load whire training

was performed in 3D configuration and the trajectories wereegated using
generic and noisy holonomic simulators compared to theccahi dynamic
programming trajectories of the same duration.



TABLE Il
SUMMARY OF TRAJECTORY RESULTS FOR DIFFERENT STARTING POSION AVERAGED OVER100TRIALS: PERCENT COMPLETED TRAJECTORIES
WITHIN 15 SECONDS TIME TO REACH THE GOAL, FINAL DISTANCE TO GOAL, FINAL SWING, AND MAXIMUM SWING .

State Goal reached t(s) Il pll (m) lnll (°) | maz|nll ()

Location Simulator (%) n o n o o o n o
(-2,-2,1) Ge_neric Holonqmic 100 6.13 0.82| 0.03 0.01| 0.54 0.28| 12.19 1.16
T Noisy Holonomic 100 6.39 0.98| 0.04 0.01| 055 0.30| 12.66 1.89
(-20,-20,15) Ge_neric Holono_mic 99 | 10.94 1.15| 0.04 0.01| 0.49 0.33| 46.28 3.90
e Noisy Holonomic 89 | 12.04 1.91| 0.08 0.22| 0.47 0.45| 44.39 7.22
((4,5),(4.5),(4,5)) Ge_neric Holonqmic 100 789 0.87| 0.04 0.01]| 0.36 0.31| 26.51 2.84
AN Noisy Holonomic 100 796 1.11| 0.04 0.01| 044 0.29| 27.70 3.94
((-1,1),(-1,1),(-1,1)) Ge_neric Holono_mic 100 455 0.89| 0.04 0.01| 0.33 0.30| 3.36 1.39
oA TR Noisy Holonomic 100 455 1.03| 0.04 0.01| 0.38 0.29| 3.46 1.52

nine segments, covering different altitudes, see FiguTien@.
clutter placed in the environment (Figure 8) deflects therrot
wind and affects the load swing. The high-resolution fligh
video is available at [1]. Note that the trajectories getezta
for this experiment used value approximator parametets t
were learned on a 2D action space, in the xy plane, a
produced a viable trajectory that changes altitude.

The experiment was performed three times and the res
ing quadrotor and load trajectories are depicted in Figu
10. During the first 10 seconds of the flight, the quadrotd
hovers and the swing is withii°. At the very beginning of
the flight (seconds 10 to 20), the swing is maximal, stayin
within 15°. In the last phase of the flight, the swing reducei
to within 10°, and at the very end of the trajectory (seconds. ) ) S
40 to 45) it reduces to the nominal swing witHin although g:]%irg.nmg{l.adrotor completing the multi-waypoint flight inettcluttered
the aircraft is still moving.

Position
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S RSl L S, =
E 1t q
~
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t(s)
(@)

Angular position of the load

Fig. 7. Trajectory of the multi-waypoint flight.

V. CONCLUSIONS

In this work, we presented a motion planning framework ppo—
for producing trajectories with minimal residual osciltats ° ! 2 © Y]
for a rotorcraft UAV with a freely suspended load. The 15 : ; ; ‘ . Simulaton
framework relies on reinforcement learning to learn the T~
problem characteristics for a particular load. We found
conditions that if met allow the learned agent to be applied
to produce a wide variety of trajectories. We discussed the
learning convergence, assessed the produced motion plans
in simulation, and their robustness to noise. Lastly, we (b)
F&emegsggr tthoe dg%%?;?%é'?g rl}gg]sigﬁi t)? g#g(th)OtggsZg':e'g 9. Quadrotor (a) and load (b) trajectories as flown, tectahrough

! - @arning compared to cubic, dynamic programming, and sitedl trajecto-
the accuracy of the simulation results. ries.
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APPENDIX
Proof of Proposition IIl.1

Proof. For simplicity, let's denote wittV,, = V (7'} (s)), the
value of thent” step when applying the greedy poliay,
with respect to the action space A.

Let Vo = V(sp), be the single maximum of function V.
Then sincel} is finite theredk € N sit. Vi + (k — 1)e <
Vo < Vi + ke, whereV; = V(s) is the value of the initial
state.

Notice that becaus® (m4(s)) > e+ V{(s) =V, > (n —
1)e+ V1. Thus, for an arbitrary step: |V — V,,|| < ||[Vo —
(n = De=Vif| < [[ke = (n = D)e|| = [[(k —n + D)e].

Forng=k+1=Vy=V,,.

O

Proposition A.1. V has a single maximum- Value
function approximationV (s) T % F(s), F(s)
(Pl @), Inll>, I9]*)", has a single extrema if all
components of the vectap are of the same sign. If all
components ofy are negative, the extrema is maximum.

Proof. By solving‘é—‘g = 0,and ensuring tha% is negative
.. AT

definite. 2% = 2 [1p hov  tb3n  an] . Thus,
av

0 & [|[[l # 0 A s =[0,0,0,0,0,0,0,0,0,0].

ds
A.4
) 1 0 0 O ( )
Gy =20 %0 0 |- sois aunique extrema iff); #
) 0 0 0 g4
0, and ‘fis‘{ is a negative definite matrix only if alb; < 0.

Learning in both Configurations described in IV-A, resulted
in negativepsi vector for all 100 trials.
O



