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Abstract—In this paper a maximum power point tracking
(MPPT) solution for photovoltaic systems (PV) based on the
Nelder–Mead (NM) optimization algorithm is presented. A well
known maximum power point condition from incremental con-
ductance (IC) algorithm is used along with the Nelder-Mead
algorithm responsible for tracking maximum power point (MPP)
on the PV system power curve. The presented control algorithm is
able to track global maximum of the power curve under uniform
insolation conditions, and more importantly under partial shad-
ing conditions with great accuracy and robustness, which was
demonstrated with various test simulations in Matlab/Simulink.
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I. INTRODUCTION

Rapid penetration of PV systems into global electrical
power production scene over the past decade caused vast
engineering and scientific interest in them. On all imaginable
fields, i.e. PV cell materials, power electronics, sun tracking,
etc., engineers and scientists are working to improve efficiency,
i.e. to maximize produced power from PV systems. Electrical
power produced by PV systems is still expensive, therefore
every effort towards improving system efficiency is welcome.
One way to improve energy yield is to incorporate MPPT
control algorithms into existing control systems of power
converters.

A lot has been written in the literature about MPPT
algorithms over the past years. Very first control methods
were constant PV voltage or PV current, perturb and observe
(P&O), hill climbing (HC), and incremental conductance (IC)
algorithms. They were further extended and optimized to elim-
inate their disadvantages. More advanced control techniques
like fuzzy logic control, sliding mode control or extremal
control [1] were used in MPPT. Neural networks were utilized
in this context also. A resourceful articles with detailed and
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comprehensive reviews of almost all today’s popular MPPT
methods and reported are listed in references [2]–[5].

Today, much effort is being put into development of MPPT
algorithms that are able to work during non-uniform insolation
or partial shading, because all common MPPT algorithms like
P&O, IC, HC and their advanced and adaptive variations work
with very high efficiencies during uniform insolation. During
non-uniform insolation PV power curve exhibits more max-
imums and some kind of global extremum seeking property
must be incorporated into existing MPPT algorithms. Various
algorithms based on global search methods were proposed in
the literature, among the newest ones are the ones based on
particle swarm optimization (PSO), genetic algorithms (GA)
and differential evolution (DE) [4], [5].

In this paper we are introducing a modification of the
well-known and widely accepted IC algorithm [6] based on
the Nelder-Mead optimization algorithm [7]. The algorithm
works accurately during uniform insolation and when partial
shading occurs. Mainly all algorithms for global MPPT use
global optimization technique, like DE or PSO to find global
maximum when partial shading occurs and then switch to
conventional P&O or IC. Our algorithm uses NM in local and
global search along with the MPP condition from IC algorithm
to know when it has reached MPP.

The paper is organized as follows: a generic control system
for MPPT purposes is described in Section II. In Section III
one-diode model of a PV panel is presented and its behavior
with respect to irradiance and temperature variations under
uniform isolation and partial shading is explored. In the second
part of Section III convex properties of the static power-voltage
(P-V) curve of the PV panel are examined, which is then used
to prove Nelder-Mead algorithm convergence toward MPP in
Section IV. Also, in Section IV a detailed description of the
Nelder-Mead algorithm is given. In Section V MPPT algorithm
based on the Nelder-Mead optimization algorithm is described
in detail. Simulation tests of the proposed MPPT algorithm are
presented in Section VI using real measurements of irradiance
and temperature.



II. MAXIMUM POWER POINT TRACKING

In the context of MPPT in PV systems the optimization pa-
rameter could be either PV voltage, duty ratio of the converter,
PV current or inductor referent current (for current mode PWM
modulations). Therefore, the optimization is carried out in one-
dimensional parameter space. In this paper the PV voltage will
be used as an optimization parameter because under irradiance
changes, which are more common and faster then temperature
changes, PV voltage changes not that much as PV current.
Instead of the PV voltage duty ratio can be used as well.
But when the output load changes then the corresponding
equilibrium duty ratio changes also, and MPPT controller
has to compensate for this disturbance. In this situation it
is better to have a dedicated controller for the PV voltage
regulation which will adjust duty ratio or inductor referent
current. Another benefit of having a dedicated controller, i.e.
of choosing PV voltage as optimization variable instead of
duty ratio is wider bandwidth of the control loop which
allows smaller sample times of the MPPT algorithm, and as a
consequence faster convergence to the MPP. The schematic of
a generic control system is given in Fig. 1.

III. PV MODEL

Well-known and widely accepted one-diode model of the
PV panel (see Fig. 2) will be used in this paper [8]:

Ipv = Iph − I0
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where Iph,ref is the referent photo-current, I0,ref is the ref-
erent diode reverse saturation current, Tc is the instantaneous
PV panel thermodynamic temperature, Tc,ref is the referent
thermodynamic temperature, Ak is the diode quality factor, q
is the elementary charge, k is the Boltzmann constant, E is the
material bandgap energy, ns is the number of cells in series,
µI,sc is the temperature coefficient of the short-circuit current,
Rs, and Rp are the equivalent series and parallel resistance,
respectively, and G is the instantaneous solar irradiance. In
(1) algebraic PV current-voltage dependance is implicit and

PV 

panel 

(array)

MPPT 

controller
PI

DC/DC 

converter

DC grid, 

loads, 

batteries

VPV IPV

VPV,ref

d; Iref

Figure 1: Conventional PV system with MPPT controller.
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Figure 2: Electrical schematic of a PV panel.

this equation can only be solved numerically because it is
transcendental.

Typical PV I-V and P-V curves are shown in Fig. 3a (in this
example series string of three PV panels). Under non-uniform
insolation or partial shading P-V static curve exhibits multiple
peaks, and only one global maximum as shown in Fig. 3b.

Under non-uniform insolation conditions some PV panels
inside series string could become power consumers, thus
limiting current through series connection. This situation can
even damage PV panels. To protect PV panels that are shaded
external bypass diodes are connected in parallel to each of
them or group of them. If on certain PV panel inside a series
string irradiation drops, bypass diode shorts this PV panel or
group in order to protect it from reverse polarity. When this
bypassing occurs voltage of the whole string drops, and power
as well. Bypass diodes are added to the series strings of PV
cells inside a PV panel to protect them in the same manner.

Every stair on the static I-V curve in Fig. 3b is a con-
sequence of bypass diode shorting associated PV panel in an
array, causing multiple peaks on the power curve. The position
of the global maximum can be located anywhere on the P-V
curve depending on the irradiance level on each PV panel in
a series string, or PV cells inside a PV panel.

A. Convex properties of the static P-V power curve

In order to prove the convergence of the NM algorithm
convex properties of the static PV power with respect to the
PV voltage curve must be analyzed. We are assuming that the
PV current and voltage are always in the working interval, i.e.:

IPV ∈ SI = [0, Isc] ,

VPV ∈ SV = [0, Voc] .
(4)

Short-circuit current Isc and open-circuit voltage Voc are
temperature and irradiance dependent, but for a given fixed
irradiance and temperature they are assumed to be constant.

PV power is equal to:

PPV = VPV · IPV . (5)

If the PV current is considered as a function of the PV voltage
IPV = f (VPV , IPV ), as in (1), than the second derivative of
the PV power with respect to the PV voltage is equal to:

d2PPV
dV 2

PV

= 2
dIPV
dVPV

+ VPV
d2IPV
dV 2

PV

. (6)

First derivative of the PV current with respect to the PV voltage
can be obtained by differentiation of the first equation in (1)
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Figure 3: PV static I-V and P-V curves under: (a) uniform
insolation, (b) non-uniform insolation.

with assumption that the PV current is a function of the PV
voltage. It is equal to:

I ′PV :=
dIPV
dVPV

= −
R−1
p + α

1 +Rs
(
α+R−1

p

) , (7)

where:
α = aI0 exp [a (VPV + IPVRs)] . (8)

Parameter a in (8) is equal to: a = q/ (AkkTcns). Numerator
and denominator in (7) will always be positive for PV current
and voltage from the interval (4). The limit of I ′PV , as VPV
approaches 0 is finite and smaller then 0. Taking all this into
account we can conclude that:

dIPV
dVPV

≤ m < 0. (9)

Second derivative of the PV current is equal to:

I ′′PV :=
d2IPV
dV 2

PV

= −β(1 +RsI
′
PV )

2
, (10)

where β = α · a/
[
1 +Rs

(
α+R−1

p

)]
is always positive. The

second derivative of the PV current I ′′PV will always be

strictly negative if I ′PV 6= −1/Rs,∀VPV ∈ SV , IPV ∈ SI .
Actually this is true. If we rearrange (7), we can conclude the
following:

I ′PV = − δ

1 +Rsδ
= − 1

δ−1 +Rs
> − 1

Rs
, (11)

where δ = R−1
p +α which satisfies δ > 0,∀VPV ∈ SV , IPV ∈

SI . So we can write:

d2IPV
dV 2

PV

< 0. (12)

By applying (9) and (12) on (6) we can conclude:

d2PPV
dV 2

PV

≤M < 0 (13)

In other words static power PV curve with respect to the PV
voltage is strictly concave in the interval VPV ∈ [0, Voc].

IV. NELDER-MEAD ALGORITHM

Nelder-Mead optimization algorithm falls into a class of
direct search methods. It is used as solver in unconstrained
minimization of a real-valued nonlinear function f (x) : Rn →
R, where n is the number of optimization parameters and x =
[x1, x2, ..., xn]

T is the vector of parameters [7].

NM is an optimization algorithm widely used in practice
for its high robustness in solving optimization tasks. There
are certain problems where it could stuck in local mini-
mum/maximum, but often it yields significant improvement
in the cost function value in just a few iterations [9]. As
the complexity of the optimization rises, i.e. the number of
parameters, algorithm’s performance deteriorates. There are
few papers which cope with the convergence properties of the
NM algorithm. So far the convergence has been proved for
strictly convex cost functions in dimension 1 [10]. As it was
explained in the previous section the static PV power curve
with respect to the PV voltage is strictly concave function, so
it can be concluded that NM will converge to the MPP in finite
time.

NM algorithm is a simplex based optimization method.
Simplex S is a set of n + 1 points in the parameter space.
Each point in the simplex is called vertex and each vertex is
associated with its function value f (v). As it was explained
earlier, in the context of MPPT simplex is the set of two
vertices, i.e. S = {v1, v2}. After each iteration vertices are
sorted according to their associated function value in a way
that the best vertex, i.e. the one with the highest function value
is given index 1, and the worst one, which is associated with
the lowest function value is given index n. Once the vertices
are sorted so called centroid is calculated, which is equal to
c = v1 in the case of one-dimensional optimization problem. In
the next step one or more of 5 different strategies (reflection,
expansion, inside, or outside contraction, and shrinkage) are
applied in order to compute a new vertex which should replace
the worst vertex. In one iteration of the algorithm two function
evaluations are performed.

The behavior of the algorithm is controlled by four param-
eters: coefficient of reflection αr, expansion αe, contraction
αc and shrinkage αs.



The pseudo-code of the algorithm is given bellow:
1: Make initial simplex S0 = {v1, v2}
2: Calculate associated function values f (v1) and f (v2)
3: Sort vertices with decreasing function values
4: while optimum not found do
5: Set the centroid as c = v1

6: Reflection → xr = (1 + αr) · c− αr · v2

7: Calculate f (xr)
8: if f (xr) > f (v1) then
9: Expansion → xe = (1 + αrαe) · c− αrαe · v2

10: Calculate f (xe)
11: if f (xe) > f (xr) then
12: Accept xe → v2 = xe
13: else
14: Accept xr → v2 = xr
15: end if
16: else
17: if f (xr) > f (v2) then
18: Outside contraction →

xc = (1 + αrαc) · c− αrαc · v2

19: Calculate f (xc)
20: if f (xc) ≥ f (xr) then
21: Accept xc → v2 = xc
22: else
23: Shrink → v2 = v1 + αs (v2 − v1)
24: Calculate f (v2)
25: end if
26: else
27: Inside contraction→ xc = (1− αc) ·c+αc ·v2

28: Calculate f (xc)
29: if f (xc) > f (v2) then
30: Accept xc → v2 = xc
31: else
32: Shrink → v2 = v1 + αs (v2 − v1)
33: Calculate f (v2)
34: end if
35: end if
36: end if
37: Sort vertices with decreasing function values
38: end while

V. MPPT APPROACH BASED ON NM OPTIMIZATION
ALGORITHM

The proposed MPPT algorithm has two modes of operation,
local search and global search. There are two differences
between them. First, different parameters of the NM algorithm
are used and second, different starting points. Local search
is associated with uniform insolation conditions characterized
with the only one MPP on the PV power curve, while global
search is initiated every time partial shading conditions are
detected.

The coefficients of reflection and expansion αr and αe
have the same value in both modes, i.e. αr = 1, αe = 2.
Depending on the search mode the coefficients of contraction
and shrinkage are changed. In local mode their values are
αc = αs = 0.5, while in global mode αc = αs = 0.9. Larger
values of αc and αs have a consequence that the algorithm
will calculate new vertices closer to the older ones. Therefore,
the size of the simplex will be changing slowly after each
iteration, ensuring that the algorithm will avoid jamming in

local maximums. These parameters are subject to optimization
depending on actual PV array configuration, mainly how large
is it. For large PV arrays they must be closer to 1, because
there is a possibility of large number of peaks on the power
curve. The larger value of them means slower convergence
because more points are searched.

The condition to stop optimization is derived from IC
algorithm, and follows directly from setting derivative of the
PV power with respect to the PV voltage to zero, i.e.:

dPPV
dVPV

= 0⇒ IPV + VPV
∂IPV
∂VPV

= 0,

tol = IPV + VPV
∂IPV
∂VPV

,

|tol| ≤ ε.

(14)

The algorithm starts new search when |tol| > ε. Along with
this another check is made to determine whether the search will
be local or global. The search will be local if the measured
PV power is changed less then predefined percentage of the
measured power in the previous sample time step, otherwise
the search is global. The vertices of the initial simplex are set
differently for local or global search mode. The pseudo code
for this part of the algorithm is:

if |Pk − Ps| < λPs then
local search
v (1) = VPV [k]
v (2) = 1.05v (1)

else
global search
v (1) = Vmin
v (2) = 0.8Vmax

end if

VPV [k] is the measured PV voltage in the current time step,
Vmin and Vmax are the minimum and the maximum input
voltage of the converter, and Ps is measured PV power every
m seconds. The value of m is multiple of algorithm sample
time and should be set to a value of time interval in which the
effects of shadowing will manifest themselves as power drop,
this will usually be between 5 and 15 seconds.

VI. SIMULATION RESULTS

The PV panel used in this paper is Solvis SV36-120. The
parameters of the PV panel are presented in Table I. Rs, Rp
and Iph,ref were obtained by optimization in Matlab/Simulink
using datasheet data of the PV panel. There are three bypass
diodes in the PV panel so the algorithm can be tested on it
without loss of generality. The boost converter used for MPPT
has the following parameters: Vin = 8-22 V, Vout = 48 V, Cout
= 880 µF, Cin = 360 µF, L = 69 µH and f = 100 kHz. The

Parameter Value Parameter Value

Iph,ref 7.6924 A Rs 0.1 Ω
I0,ref 0.236 µA Rp 300 Ω
E 1.12 eV µI,sc 3.8 mA/°C
Ak 1.3 Tc,ref 25°C
nS 36 Gref 1000 W/m2

Table I: Parameters of the Solvis SV36-120 one-diode model.
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Figure 5: Test 1 - (a) Responses of the PV power and voltage. Maximum theoretical power is marked with dashed red line; (b)
Static power curves for various conditions. Solid black - initial conditions, dashed - t = 1 s, dot-dashed - t = 1.5 s, green solid
- t = 2 s.

schematic of a test system is shown in Fig. 4. We will perform
two simulation tests.

A. Test case 1

This test is performed on a small time scale to show algo-
rithm ability to find global optimum under uniform insolation
conditions and under partial shading for complete system,
with converter averaged model, PI controller and all relevant
dynamics of the system. Responses of the PV power and
voltage are shown in Fig. 5a. Sample time of the algorithm is
20 ms. Simulation is started with uniform insolation G = 800
W/m2 and temperature 55°C, immediately after initialization
algorithm starts global search and finds optimum after 0.3 s.
At t = 0.5 s irradiance on one part of the PV panel is changed
to G = 720 W/m2 and temperature to 49.5 °C, then after 100
ms they are changed to initial values. These changes were
performed to test how the algorithm is responding to slight
irradiance and temperature changes. At t = 1 s irradiance on
one section of the PV panel is changed to G = 560 W/m2

which causes the appearance of two peaks on power curve.
In this situation global maximum is on the right side of the

power curve (Fig. 5b - dashed curve). In t = 1.5 s irradiance is
further lowered to G = 240 W/m2. This time global peak is on
the left side of the power curve (Fig. 5b - dot-dashed curve).
Irradiance on the second part of the PV panel is reduced from
initial value to G = 240 W/m2 at t = 2 s, which causes that
the power curve has one global maximum, because of uniform
insolation (Fig. 5b - green solid curve). In t = 2.5 s irradiances
on both parts of the PV panel are raised to initial value. It can
be seen that algorithm perfectly tracks global maximum of the
power curve.

B. Test case 2

In this test simulation performance of the algorithm on
a single PV panel assuming uniform insolation is examined.
The used global horizontal irradiance and temperature profiles
are real measurements measured on 27th April 2013 on the
roof of our Laboratory for Renewable Energy Systems using
Kipp&Zonen CMP11 pyranometer for global irradiance, and
PT100 sensor for temperature. We have taken representative
one hour sample, which contains slow and rapid changes of
irradiance and temperature. The weather was partially cloudy
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Figure 6: Test 2 - (a) Irradiance profile, (b) temperature profile and (c) extracted power in gray, and maximum theoretical power
in black.

as can be seen from the irradiance profile. Irradiance and
temperature profiles and extracted PV power are shown in Fig.
6. Sample time of the algorithm is 100 ms.

VII. CONCLUSION

In this paper we have introduced an improvement of
the well-known IC MPPT algorithm by using Nelder-Mead
optimization algorithm. According to the authors’ knowledge,
utilization of NM algorithm for MPPT purposes has not been
used before in the literature. Because NM algorithm chooses
potential optimum points with different distances the proposed
algorithm finds optimum point faster then non-adaptive varia-
tions of IC algorithm. The performance of the algorithm under
uniform insolation and partial shading was tested. It has been
proved that the proposed algorithm accurately tracks global
maximums under both conditions. Simulations were conducted
with real measured profiles of irradiance and temperature.

In the future work we will be focusing on better partial
shading determination, on experimental testing of the proposed
algorithm on various PV configurations, and on experimental
comparison with other MPPT solutions.
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