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a b s t r a c t

We describe a method for eye pupil localization based on an ensemble of randomized regression trees
and use several publicly available datasets for its quantitative and qualitative evaluation. The method
compares well with reported state-of-the-art and runs in real-time on hardware with limited processing
power, such as mobile devices.

& 2013 Published by Elsevier Ltd.

1. Introduction

The human eyes play an essential role in everyday interaction,
communication and other routine activities. Thus, tracking the
eyes and eye pupils opens a wide range of applications. Eye pupil
localization can be used in biometric systems, gaze/focus estima-
tion, human–machine interfaces, character animation, etc. Using
the eyes as a means of human–computer interaction is helping
disabled people to improve their daily lives, and may become a
hands-free alternative in other applications or an entertaining
element in innovative games. Eye tracking is increasingly finding
use in safety applications to detect situations such as sleepiness or
lack of attention while driving or using hazardous machinery.

High quality gaze estimation systems most commonly use
head-mounted or multiple near-infrared cameras. Such systems
can achieve high accuracy but they are expensive, intrusive or both.
Furthermore, they often require calibration. Therefore, they are not
well suited for user friendly applications working on off-the-shelf
hardware where eye information is useful. There is a need for more
versatile and simple systems and our research is directed this way.
We are interested in the case when the images are supplied from a
monocular video stream on consumer hardware, especially on
mobile devices. These images may have low resolution are often
noisy and have bad contrast. Furthermore, we are interested in
supporting a wide range of PC and mobile devices with limited

processing power. To satisfy such requirements, a robust yet high-
performance system is needed.

In this paper, we describe a framework for eye pupil localization.
Small computational cost of the developed framework makes it ideal
for achieving high performance using off-the-shelf hardware. Only
one uncalibrated camera is needed and this makes the framework
completely non-intrusive. The implemented system runs in real-time
on mobile devices.

1.1. Related work

Our work is related to a large body of research on eye and gaze
tracking. An extensive overview has been done by Hansen et al. [18].

Of particular interest is the research done on eye center
localization. Methods that report state-of-the-art results have
been described in [29,31]. The basic idea of both approaches is
to find the face within the image and then locate eye centers using
geometric information (symmetry or curvature of the iris). Timm
et al. [29] propose an approach based on analysis of image
gradients. The idea is to define an objective function which obtains
its maximum in the location where most gradient vectors inter-
sect. Since the iris has a circular appearance in most frontal
images, this also corresponds to the position of the pupil. Valenti
et al. [31] use the curvature of isophotes (curves connecting points
of equal intensity) to design a voting scheme for pupil localization.
Additionally, they extend their approach by extracting a SIFT [24]
vector for each candidate location and match it with examples in -
a database to obtain the final decision. In some cases this signi-
ficantly increases the accuracy. Both methods are designed to
deal with frontal faces and are accurate at solving this problem.
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Although they reportedly work in real-time, the authors have not
demonstrated their performance on mobile devices.

The methods are fundamentally different from our approach
since we use a machine learning algorithm to discover the
structure in the problem rather than assuming one a priori. We
formulate the problem of pupil localization as regression based on
low-level image features. The crucial component is based on
randomized trees. These were introduced to the computer vision
and image processing community by Amit and Geman [1], and
used since to solve classification [15,22,23,26,27,32] and regres-
sion [7–12,17,28,36] problems. Randomized trees were a natural
choice in our case due to the fact that they handle large training
sets with multiple inputs and outputs, and their high general-
ization power and fast computation.

A similar approach has been taken in [35] to estimate the gaze
of the user. The authors decided to select a subset of Haar-like
features and train a neural network to estimate the point of gaze
on the screen.

1.2. Our contributions

We describe a method for pupil location estimation based on
an ensemble of randomized regression trees. The method com-
pares well with the current state-of-the-art in terms of accuracy
and runs in real-time on hardware with limited computational
resources, such as mobile devices. Additionally, we perform
experiments that could prove valuable to other researchers and
engineers in the development of image based regression algo-
rithms for similar problems.

2. Method

We assume that the approximate locations of the eyes are
known and that we can extract rectangular regions that contain
them. This does not pose a problem today since very efficient and
accurate face detectors exist. In the next step we use a regression
tree ensemble to estimate the coordinates of eye pupils within
these regions.

For the purpose of our experiments, we implemented a frame-
work for regression tree construction and evaluation. Furthermore,
we use a face detector available in OpenCV to find approximate
locations of the eyes in videos and still images.

2.1. Regression trees

Regression trees [5] are tools for function approximation.
The basic idea is to split recursively the original problem into
two simpler ones, each solvable by a model of reduced complexity.
The splits are performed at internal nodes of the tree, based on
problem-specific binary tests. Terminal nodes contain simple
models that approximate the desired output. In practice, we treat
the tree construction process as a supervised learning problem. In
other words, we have to choose the binary tests in internal nodes
and output models at terminal nodes based on a finite set of
input–output pairs in a training set.

Let us briefly describe the configuration of a single tree in our
implementation. The binary tests at internal nodes of the tree are
based on pixel intensity differences (this is motivated by good
results obtained, for example, by [6,27]). We define a binary test
on image I as

bintestðI; l1; l2; tÞ ¼
0; Iðl1Þ�Iðl2Þrt

1 otherwise

�

where IðliÞ is the pixel intensity at location li and t is the threshold.
Locations l1 and l2 are in normalized coordinates. This results in

their resolution independence and means that the binary tests can
easily be resized based on the data obtained from depth cameras
or trackers/detectors that provide information about the scale
(resizing is needed when the user moves around and changes his/
her distance from the camera as this affects the scale of eyes
within the video frame). Each terminal node of the tree contains a
constant vector that models the output.

The construction of the tree is supervised. The training set
consists of images annotated with values in R2. In our case, these
values represent the location of eye pupil in normalized coordi-
nates. The parameters of each binary test in internal nodes of
the tree are optimized in a way to maximize clustering quality
obtained when the incoming training data is split by the test. This
is performed by minimizing the following quantity:

Q ¼ ∑
xAC0

Jx�x0 J22 þ ∑
xAC1

Jx�x1 J22; ð1Þ

where C0 and C1 are clusters that contain pupil coordinates xAR2

of all eye patches for which the outputs of binary test were 0 and 1,
respectively. The vector x0 is the mean of C0 and vector x1 is the
mean of C1.

As the set of all pixel intensity differences is prohibitively large,
we generate only a small subset during optimization and compute
a threshold for each of them. Although there are many strategies
to generate this subset [6], in our experiments we select each pixel
difference by sampling two locations from a uniform distribution
on a square ½�1;þ1� � ½�1;þ1�.

For each pixel intensity difference feature, an optimal threshold
can be computed in the following way. Sort the training images
by the value of their feature response and then perform a linear
search over the array for the best threshold. The test that achieves
the smallest error according to Eq. (1) is selected. Thus, the com-
putational complexity of binary test optimization is OðF � S log SÞ,
where S is the number of training samples at the node and F is the
number of generated features. The training data is recursively
clustered in this fashion until some termination condition is met.
In our experiments, we limit the depth of our trees to reduce
training times and memory requirements. The output at each leaf
node is obtained as the mean of pupil coordinates arriving at
that node.

2.2. Tree ensembles

It is well known that a single tree will most likely overfit the
training data. On the other hand, an ensemble of trees can achieve
impressive results. The most common ways of combining multiple
trees are random forests [4] and gradient boosting [14]. The former
grows deep trees independently and then averages the result of
prediction of each individual tree in the ensemble. The latter
grows trees sequentially. Each new one added to the ensemble is
learned to reduce the remaining training error further. Its output is
shrunk by a scalar factor (called shrinkage, νA ½0;1�) that plays a
similar role as does learning rate when training neural networks.

Both methods have as parameters the maximum depth of each
tree, d, and the number of trees in an ensemble, T. Memory
required to store the regression ensemble scales as Oð2d � TÞ and
time for its evaluation as Oðd � TÞ. Additionally, gradient boosting
has shrinkage ν as a parameter. This parameter does not affect the
speed or memory requirements during runtime.

One of the reasons behind the success of tree ensembles is the
randomness present in the learning process. Randomness is injected
in the induction of each single tree by bootstrap sampling the training
set and randomly choosing features as split candidates at each internal
node. This procedure reduces the correlation between different trees
in the ensemble and leads to better generalization [19]. The other
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benefit of this approach is the reduction of training time needed to
learn each individual tree.

Both methods show good results in practice, as evidenced in
numerous experiments conducted by other researchers and engi-
neers. Thus, we have decided to use numerical measures in order
to determine which method to use.

2.3. Random perturbations

We have observed that the output of regression trees is noisy
and can be unreliable in some frames, especially if the video
stream is supplied from a low quality camera. This can be
attributed to variance of the regressor as well as to the simplicity
of binary test at internal nodes of the trees: pixel footprint size
changes significantly with variations in scale of the eyes and we
can expect problems with aliasing. These problems can be reduced
during runtime with random perturbations. The idea is to sample
multiple rectangular patches at different positions and scales
around the eye and estimate the pupil location in each of them.
The resulting pupil coordinate is the median over the detections
for each spatial dimension. Similar solutions were also proposed
by Dollár et al. [10] and Cao et al. [7].

The runtime complexity of the method scales as Oðp � T � dÞ,
where p is the number of sampled rectangles (random perturba-
tions). Notice that this complexity does not depend on the
resolution of the patch.

2.4. A chain of multi-scale ensembles

We have observed that accuracy and robustness of the method
critically depend on the scale of the rectangle within which we
perform detection. If the rectangle is too small, we risk that it will
not contain the eye at all due to the uncertainty introduced by face
tracker/detector. If the rectangle is big, the detection is more
robust but accuracy suffers. Thus, we propose a solution similar to
the one provided by Ong et al. [25]. The approach also resembles
the standard pyramidal optical flow algorithm [3].

The idea is to learn multiple tree ensembles, each for estima-
tion at different scale. The method proceeds in a recursive manner,
starting with an ensemble learned for largest scale. The obtained
intermediate result is used to position the rectangle for the next
ensemble in the chain. The process continues until the last one is
reached. Its output is accepted as the final result. Images illustrat-
ing the typical size of rectangles for multi-scale estimation can be
seen in Fig. 1.

We provide numerical results in the experimental section to
back our arguments.

3. Training the method

3.1. Annotated data

For our experiments we use the UULM [34] and Gi4E [33]
publicly available datasets. Additionally, we constructed our own
database for the purposes of the paper. It consists of various
students, people from our lab and images acquired on the internet.

All databases consist of images of a number of different
subjects with varying head rotation and gaze direction. The images
are of varying resolution (800�600 and 640�480 pixels) and
each is annotated with locations of eye pupils. All datasets
together contain around 5000 face images.

3.2. Training set preparation

Under real world conditions, we must expect that face trackers
and detectors, on which our method relies for rough eye region
localization, will introduce errors in image patch extraction. Thus,
in order to make our system more robust, we intentionally
introduce position and scale perturbations in the training data.

For each annotated face in available databases we extract a
number of eye patches and corresponding pupil coordinates. All
these patches are generated from the basic rectangle using random
perturbations. The basic rectangle has a predetermined aspect
ratio and is obtained from annotated eye corner coordinates which
provide both eye region location and a scale factor. Each position
perturbation is sampled from a uniform distribution on a rectangle
determined by �25% to +25% of the width and height of the basic
rectangle. Similarly, each scale perturbation is sampled from a
uniform distribution on an interval determined by �25% to +25%
of the basic rectangle scale.

3.3. Generalization ability of learned tree ensembles

In order to establish the generalization ability of tree ensem-
bles for different parameter values we have performed numerous
experiments and it is not possible to show all results due to limited
space. Thus, we have decided to present only the graphs that
demonstrate the reduction of mean squared error (in image
coordinates) achieved by different ensembles for various tree
depths, d.

For each annotated image of the eye, we generate 100 training
samples according to the method described in the previous
section. The UULM database and our annotated images are used
for training and Gi4E is used for validation. Thus, the training set
consists of around 700 000 images and the validation set of
around 200 000 images. We grow each tree on a 50% bootstrap
sample of the prepared training data. The number of binary tests

Fig. 1. Some typical rectangle sizes for multi-scale pupil location estimation.
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considered at each internal node is 4þ 4d′, where d′ is the depth
of the node. For boosting, the shrinkage parameter is fixed to
0.4 as we have noticed that this value gives good results.

The whole evaluation procedure was repeated 5 times and the
results were averaged. In Fig. 2 we plot the mean squared errors
against the number of binary test evaluations, d � T , for different
ensemble parameters. We can observe that boosting outperforms
random forests in our setup. Note that the errors are not normal-
ized, i.e., they are in image coordinates. Thus, as the validation
images vary in resolution, these errors do not have an intuitive
relation to the accuracy of pupil localization. In later sections we
will use a more appropriate measure to compare our method with
other approaches.

All tree ensembles mentioned in the rest of the paper were
trained using data from all mentioned databases. To generate the
training set, we used 400 random perturbations per annotated
image of the eye.

3.4. Comments on training time

We implemented our framework for regression tree construc-
tion in standard C. The training runs in one thread although it
could be trivially parallelized (in our case it was just not neces-
sary). For comparison, training time for an ensemble of one
hundred trees of depth equal to ten takes about 6 h on a training
set with six million examples, which is acceptable.

4. Experiments

We intend to make a system capable of real-time performance
on hardware of limited processing power, such as mobile devices.
Thus, we need to take care of both memory and computation
requirements. The complexity of the estimation structure can be
regulated by varying the number of trees and the maximum depth
of each tree. We fix the run-time complexity by imposing a
constraint on the number of binary tests that can be evaluated
during estimation to 1000. Furthermore, to limit the memory
requirements, we fix the maximum depth of each tree to d¼10.
This limits the number of trees to T¼100. For learning boosted
ensembles the shrinkage was set to ν¼ 0:4. In our preliminary
experiments we have observed that these parameters give good
tradeoff between accuracy and performance. It is left to determine

the appropriate number of stages for multi-scale estimation process
and the method for training each ensemble. We address these
questions through experimental analysis.

We are interested in evaluating the usefulness of the method in
relevant applications such as pupil localization in still images and
pupil tracking in video streams. In our implementation, eye pupil
localization in still images is summarized by the following steps:

1. Obtain a face bounding box using a face detector.
2. Estimate eye regions using simple anthropometric relations.
3. Estimate pupil location for each eye region using a chain of

multi-scale tree ensembles.

Pupil tracking uses the previously described method for initializa-
tion and proceeds by repeating the following steps for each frame:

1. Estimate positions of the eyes based on pupil locations in the
previous frame.

2. Estimate scale of each eye region based on distance between
the eyes.

3. Estimate pupil location for each eye region using a chain of
multi-scale tree ensembles.

In the rest of this section we discuss quantitative and qualita-
tive results obtained by the method. Additionally, we measure the
required processing times on different hardware.

4.1. Quantitative results

The normalized error is adopted as the accuracy measure for
the estimated eye locations. It was proposed by Jesorsky et al. [21]
and is defined as follows:

e¼maxfDL;DRg
D

; ð2Þ

where DL and DR are the Euclidean distances between the found
left and right eye centers and the ones in the ground truth, and D
is the Euclidean distance between the eyes in the ground truth.
Roughly, an error of er0:25 corresponds to the distance between
the eye center and the eye corners, er0:1 corresponds to the
range of the iris, and er0:05 corresponds to the range of the
pupil.

We plot regression error characteristic (REC) curves [2] to
evaluate the accuracy of our method for different parameter
choices on different datasets. The first experiment examines the
accuracy on a set of still images. The other evaluates real-time
pupil localization in a video stream.

4.1.1. Experimentation with still images
The BioID database (http://www.bioid.com) is used for testing.

It consists of 1521 frontal face grayscale images with significant
variation in illumination, scale and pose. In several samples of the
database the subjects are wearing glasses. In some instances the
eyes are closed, turned away from the camera, or completely
hidden by strong highlights on the glasses. Due to these condi-
tions, the database is considered difficult and realistic. Some
snapshots can be seen in Fig. 3. Our approach yields inaccurate
estimations if the eyes are closed or strong reflections on
the glasses occur as we did not include such examples in the
training set.

One important thing to note before presenting numerical
results is that we omitted the images where the detector did not
find the face, following [31]. This did not significantly alter the
results since approximately 1% images were discarded this way.

Let us first examine the benefits of multi-scale estimation
(we do not perform random perturbations in this experiment,
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Fig. 2. Mean squared errors on validation data plotted against the number of
evaluated binary tests, d � T , for different maximum depth d of trees in boosted
ensembles and random forests. Number of binary test evaluations is proportional to
the amount of computation needed at runtime.
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i.e., we set p¼1). Quantitative results can be seen in Fig. 4. We can
observe that this procedure significantly improves the accuracy for
er0:15. As we are mostly interested in accurate pupil localization,
we can conclude that the multi-scale approach provides signifi-
cant benefits.

The results can be improved even further by using random
perturbations, as explained in Section 2.3. Quantitative results can
be seen in Fig. 5. We observe a significant increase in accuracy when
p increases. Of course, the number of computations increases
linearly with p. Thus, in order to justify the use of this improvement
we demonstrate in Section 4.3 that real-time frame rates can be
achieved on mobile devices with moderate values of p.

We compare our results in Table 1 to the two state-of-the-art
methods for eye center localization. We can observe that our
method compares well to the competition in terms of accuracy. Of
course, there is always the problem of dataset bias [30]: We cannot
conclude which method is superior based just on accuracy results
on one dataset.

We noticed a few sources of discrepancies with annotated data
(examples can be seen in Figs. 3 and 6):

� Presence of eyeglasses: In some images the eyes are completely
hidden by strong highlights on the glasses. Our method fails
under these conditions. Fig. 6a illustrates this case.

� Closed eyes: Eye center localization can not work on closed eyes
when the iris is not visible. Thus, the results obtained from our
system are unpredictable during eye closure. An example can
be seen in Fig. 6b.

� Eye region extraction failure: Some bad results are due to the
limitations of the used face detection procedure. An example
can be seen in Fig. 6c.

4.1.2. Experiment on video
We use the Talking Face video database (http://www-prima.

inrialpes.fr/FGnet/data/01-TalkingFace/talking_face.html) to evaluate
our system quantitatively in real-time applications. The video con-
tains 5000 frames taken from a video of a person engaged in
conversation. Each frame was annotated semi-automatically using
an active appearance model [16] trained specifically for the person in

Fig. 3. First row illustrates some successful detections on the BioID database. The second and third one illustrate some typical failures.
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Fig. 4. Increase in accuracy when using a multi-scale estimation approach. We
observe that boosting gives better results: (a) Estimation using random forests and
(b) estimation using boosted ensembles.
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the video. The annotations are sufficiently accurate to represent the
facial movements during the sequence. They contain the locations of
eye centers, among other characteristic points on the face.

We used an estimation chain consisting of 5 boosted ensembles
with 20 trees of depth equal to 10. The number of random
perturbations was set to p¼15. The video showing tracking results
is available as supplementary material.

The normalized error (Eq. (2)) averaged over the video
sequence was equal to 0.0236 and its median 0.0201. Accuracy
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Fig. 5. Increase in accuracy when using different number of random perturbations,
p. We can observe that boosting gives significantly better results: (a) Estimation
using random forests at 5 different scales, 20 trees per scale and (b) estimation
using boosted ensembles at 5 different scales, 20 trees per scale.

Table 1
Comparison of normalized error scores on the BioID database. The values in the
table are percentages.

Method er0:05 er0:1 er0:25

Our results, p¼7 85.7 95.3 99.7
Our results, p¼31 89.9 97.1 99.7
Timm et al. [29] 82.5 93.4 98.0
Valenti et al. [31], basic method 80.6 85.8 96.6
Valenti et al. [31], extended method 86.1 91.7 97.9

Fig. 6. Snapshots from the BioID database illustrating some typical failures of our method: (a) Failure due to strong highlights on the glasses; (b) failure due to eye closure;
and (c) failure of face detection procedure.
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Fig. 7. Accuracy curve for the Talking Face video pupil tracking.
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Fig. 8. The distribution of normalized errors over the frames of the Talking Face video.
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curve can be seen in Fig. 7 and error distribution over the frames
in Fig. 8. These show that most of the time our results were in the
range of pupil radius from annotated data. Some snapshots from
the video can be seen in Fig. 9.

Although the average error is sufficiently low, we analyze the
error spikes present in the graph. We noticed a few sources of
these discrepancies with the annotated data:

� Closed eyes: Eye center localization can not work on closed eyes
when the iris is not visible. Thus, the results obtained from our
system are unpredictable during eye closure. The proper solu-
tion is to include eye closure detection, which we plan in the
future. An example can be seen in Fig. 10a.

� Error in annotated data: Because the annotated data was
obtained semi-automatically, it contains occasional errors. For
example, this happens around the 4000th frame (a big spike in
the error graph). Fig. 10b illustrates the case. We can observe
that our system is more accurate than the annotated data in
this frame.

� Failure of our method: In some frames our method outputs
incorrect eye pupil locations even when all appropriate condi-
tions are met. An example of such a case can be seen in Fig. 10c.

4.2. Qualitative results

Besides the quantitative analysis on datasets that provide
ground truth data, we performed less formal qualitative experi-
ments on still images and video input, both on PCs with webcams
and on mobile devices. A video showcasing these results is
available at https://www.youtube.com/watch?v=7J30yNHlXlQ
(which is also available as supplementary material). Furthermore,
for readers who wish to test the method themselves, the
windows-based demo application is available (http://hotlab.fer.
hr/_download/repository/puploc.zip).

Fig. 11 illustrates some examples of eye pupil localization in still
images. The system correctly estimates the pupil coordinates even
when eye rotations are present. Fig. 12 illustrates some results for
eye regions extracted during tracking in a video stream. We can
observe that the method provides accurate results for large
variations in position, scale and rotation. This demonstrates that
our approach can successfully deal with real-world conditions.

We have observed occasional failures that can be attributed to
the reasons discussed in Sections 4.1.1 and 4.1.2.

4.3. Analysis of performance and required memory

We measure the average time to process one eye-region
rectangle and locate the pupil using our method with standard
parameters (T¼100 and d¼10). The system is implemented in C
and runs in a single thread. Most computations are performed in
integer arithmetic to further speedup the processing. The obtained
results are reported in Table 2.

Considering that typical face tracking performance may be
around 30–50 frames per second on most devices, this gives a
frame processing time of 20 ms, and considerably more in case of
full face detection. This means that detection of both eye pupils
presents a negligible performance impact within a face detection
or tracking system. Also note that the system can track eyes on its
own at these computational requirements (Section 4.1.2).

A structure of T¼100 trees of depth d¼10 requires approxi-
mately 1.3 megabytes of storage. We believe that this is acceptable
both at runtime and distribution with an application.

5. Conclusion and future directions

We have described an eye pupil localization framework based on
an ensemble of randomized regression trees. The implementation

Fig. 9. Snapshots from the Talking Face video in which our system outputs the correct locations of eye pupils.

Fig. 10. Snapshots from the Talking Face video illustrating some typical discrepancies with annotated data. Annotations are represented with a cross and the output of our
system with a circular target symbol: (a) Failure due to eye closure; (b) error in annotated data; and (c) our method outputs wrong results.
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is capable of achieving real-time performance on mobile devices.
The developed software provides a low-cost alternative to complex
and costly commercial eye tracking systems.

The described method is very general and can be applied to
solve similar problems, such as tracking of learned 2D templates.
An interesting application would be to track multiple points

Fig. 11. Pupil localization in still images.

Fig. 12. Example eye patches with estimated pupil locations.
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scattered on a rigid object and use RANSAC algorithm [13] to
recover the motion, similar to the work done by Zimmermann
et al. [37].

Future work includes the possibility of using randomized trees
for eye closure estimation. It would be interesting to see if we
could obtain good results by synthesizing a training set using
methods from computer graphics. Another interesting direction of
research is to use our method for estimating the point of gaze of
the user. This would require the integration of a 3D model to our
framework (similar to [20]).
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