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Abstract—In this paper nonlinear Model Predictive Control
of a tower crane based on reference shaping is proposed. MPC
controller is used to calculate optimal reference for the inner
control loop of the tower crane. The main objectives that
the MPC controller needs to fulfill are tracking the reference
position, suppressing the payload oscillations while satisfying
operational constraints of the crane. The inner loop consists of
P position controller and PI velocity controller which is common
in industrial applications and easily implementable in standard
frequency converters used in the cranes. The proposed approach
is verified through simulation and experimental test on laboratory
model of a 3D tower crane.

Index Terms—3D Tower Crane, Nonlinear Predictive Control,
Reference Shaping.

I. INTRODUCTION

Crane control is a classic example of a problem where a
simple feedback loop is inadequate. The hoisting mechanism
of the crane is highly susceptible to oscillatory motions of the
payload which can endanger both equipment and personnel.
These oscillations may be triggered by both inertial forces
due to the motion of the crane, and external forces such
as unavoidable wind and sea conditions. Suppressing such
motions usually requires a more advanced control algorithm.

Early, and still widely used, approaches for crane control
used an open loop input shaping technique [1] [2]. However,
they can only suppress the oscillations induced by the crane in-
ertial forces while leaving external oscillations remain largely
undamped.

Closed loop solutions for the crane problem employ a wide
variety of techniques from simple PID control to advanced
nonlinear approaches often involving artificial intelligence
techniques. However, the most widely used approach is a
combination of a linear controller and an adaptation mecha-
nism. A linear quadratic controller (LQR) with a feedback gain
vector as a function of the time-varying payload rope length
is presented in [3], [4]. A robust sliding mode based approach
to crane control problem in the case of poor information
on system dynamics or its parameters is presented in [5].
To account for nonlinear nature of the load swinging some
authors adopted fuzzy logic based approach [6], [7], adaptive
fuzzy sliding mode approach [8] and passivity based control
approach [9],[10]. More on existing control approaches can be
found in [11].

The aim of this paper is not to replace the existing crane
control system with a new one, but instead we will resort to
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augment it with a new position reference generation module.
In order to ensure fast load manipulation that satisfies all the
system and the operational constraints, we will use model
predictive control (MPC) approach [13] to generate an optimal
position reference signal. The proposed approach aims to
combine the benefits of both, MPC and cascade control, to
achieve fast reference tracking and good disturbance rejection
within the inner control loops. The nonlinearity of the system
is addressed via a standard linear parameter varying (LPV)
framework [12] and as a result the tower crane system can
be represented as a combination of three coupled subsystems.
By exploiting the specific coupling structure within the 3D
tower crane system the non-convex optimization problem can
be transformed into three quadratic optimization problems that
has to be subsequently solved.

The paper is organized as follows. In section II we present
the nonlinear mathematical model of the crane. Section III
discusses the details of the controller while simulated and
experimental results are presented in section IV. Finally, the
conclusion and future work are presented in section V.

II. MATHEMATICAL MODEL OF THE TOWER CRANE

The tower crane, shown in Fig 1, consists of a hoisting and a
trolley-jib support mechanism. The jib rotates in the horizontal
plane, while trolley moves along the jib. The tower crane
enables three degrees of freedom with the hoisting mechanism.

Mathematical equations of the system motion can be derived
via Lagrange equations, by defining total potential and kinetic
energy of the system as a functions of generalized coordinates:
jib angular position 6, swing angle ¢, trolley position z,
pendulum swing angle « and rope length L (Fig 1). The
resulting nonlinear model is very complex. In order to simplify
the model, three motions are considered separately while
couplings are treated as a change in system parameters. The
obtained nonlinear model is represented by equations (1)-(4).

Using small-angle approximation a simplified mathematical
model (1)-(4) can be written in the following compact form:

« hoisting system dynamics
ap(k+1) =AWz, + By, (5)
AT
where x;, = |L L]
« motion of the trolley

zo(k+1) = A®(L)zq + B (L)u,, (6)



Fig. 1. Experimental model of tower crane
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« and the jib motion L - . o
——»| Hoisting dynamics >
0s(k +1) = A® (2, L)84 + B® (z, L)ug,  (7)
ok U x
where 0¢ = [9 0 d) ¢] ’ 1—» Trolley dynamics L
Note that in model (5)-(7) the hoisting system dynamics is
linear, while the trolley and the jib dynamics are described by
LPV models. Cable length L is considered as a time varying {
parameter for trolley LPV model while trolley position and Uy Jib dvnamics o
cable length constitute a time-varying parameter vector for jib o

LPV model. The simplified 3D crane is graphically depicted
in Fig. 2.
The parameters of the 3D tower crane model are given in

Fig. 2. Simplified 3D crane model



TABLE I
PARAMETERS OF THE TOWER CRANE

Parameters
Begz = 25[Nms/rad)

Description

Equivalent viscous damping
coefficient as seen at the mo-
tor pinion

Begr = 25[Nms/rad] Equivalent viscous damping
coefficient as seen at the mo-

tor pinion

Bpa = 0.0015[Nm/s] viscous damping coefficient

as seen at the pendulum axis

Bpy = 0.0015[Nm/s] viscous damping coefficient

as seen at the pendulum axis

Ngz = 0.68 Gearbox efficiency
Nmaz = 0.92 Motor efficiency
ngr = 0.29 Gearbox efficiency
NmT = 0.92 Motor efficiency
g =9.81[m/s?] Gravitational ~ constant  of
earth

Jp = 7.34-1073[kgm?]
Jarm = 0.7[kgm?)
Jme = 7.32- 1077 [kgm?]
It = 9.44 - 1073 [kgm?]

Load moment of inertia

Arm moment of inertia

Rotor moment of inertia

Rotor moment of inertia

Kgo = 76.64 Planetary gearbox gear ratio
Kgr =275 Planetary gearbox gear ratio

K = 0.032 Motor torque constant

K1 = 0.02969[Nm/A] Motor torque constant
Rz = 25[Q] Motor armature resistance
R, 7 = 0.9[Q] Motor armature resistance
M. = 2.78[kg] Mass of the cart system, in-

cluding the rotor inertia

m = 0.32[kg] Load mass

rmp = 0.0375[m] Motor pinion radius

Table 1.

III. MODEL PREDICTIVE CONTROL FOR REFERENCE
SHAPING

Model predictive control is a form of control in which the
current control action is obtained by solving, at each sampling
instant, a finite horizon open-loop optimal control problem,
using the current state of the plant as the initial state; the
optimization yields an optimal control sequence and the first
control in this sequence is applied to the plant. An important
advantage of this type of control is its ability to cope with
hard constraints on controls and states [13]. Specific structure
of the crane system couplings (see Fig. 2) suggests possible
solution to the crane control problem. Instead of solving one
non-convex optimization problem we rather resort to solve it
as three subsequent convex optimization problems. First MPC
controller is designed for hoisting subsystem responsible for
lifting and lowering the load, second for trolley and third for
arm subsystems which are responsible for moving the load
from point to point. The proposed solution can be summarized
as follows:

1) Solve optimization problem for cable length. Based on

prediction of cable length L obtain matrices Agf), B,(f)

2) Solve optimization problem for translation motion.

Based on prediction of cable length L, and translation

. . ices A B®)
motion x, obtain matrices A;”, B,

3) Solve optimisation problem for rotational motion.

As already mentioned in the introductory section, predictive
controller is used in this paper generate feasible position
trajectory for each of the crane subsystems (see Fig 3),
such that fast load positioning is ensured, with reduced load
swinging.

MPC
Reference

Reference

P Uref PI u 3D Tower
controller controller Crane
A

Utrolley

Ttrolley

Shaper

States x

Fig. 3. Crane control loop diagram for the i-th crane subsystem

The inner loop itself consists of P position control and a PI
velocity controller. Such the control structure is common in the
industrial applications and usually implemented in frequency
converters. Furthermore, by retaining inner loops the tower
crane model becomes more robust to model uncertainties as
well as external disturbance. The input to the inner loop is
the position reference signal, while the output is the actuator
voltage given to the tower crane. The actuator voltage can
be expressed as s time invariant linear combination of states
(which were given in (1)-(4))

u(k) = Kpx(k) + Kyaree(k) ®)

where K, and K.t are vectors that depend on the parameters
of the P and PI controller.

The closed loop system matrix A% (2()), j < i of the i-th
tower crane subsystem model can be written as

Ag)(x(j)) = AW (D) 4 BO (3K (), 9)

where A (2(9)) and B® (2(9)) describe the motion of the
i-th crane subsystem. The input signal to the inner control
loqp, at time instance k, becomes the reference position
mi?f(k +7), 7 =1,..., N (which is different from the global
reference position given to the MPC). In the way, the proposed
approach can be also seen as a special case of reference
shaping approaches [2]. Closed loop dynamics of the i-th crane
subsystem can be written as

e (k+1) = Ag;)(x(j))z(i)(k) + Bég)(z(j))xggf(k), Jj<i.
(10)
Without loss of generality, the position tracking problem
can be reformulated into a regulation problem, by translating
the origin of the system, with global reference signal assumed
to be zero.



In order to design MPC reference shaper in this paper we
propose using the following objective function:

N
T @ ) = D@D k4 3)" (05 QD)a (k + )+
j=0
+ (D (+ )T (P ROk + )+
o+ (e (k + )T Qreg (i (k + ).
1D
where p € [0,1), and @ > 0 and R > 0, Qs > 0. The idea
behind such the the objective function will become apparent

later in this section. In that case the finite time optimal control
problem for reference shaper can be rewritten as

(@@, ar)) = argmin . (@@ (k), 2l (k) (12)

subject to:
5Ok +1) = AY (@)D (k) + B (0" D)al (k) j < 4,
uD (k) = K2 (k) + KD (k), 82
Umin < KW 20 (k) + Kr(b)scr(;f)(k:) < Umax.- (15)

Under a mild assumption that the inner loop of each
subsystem ensures steady-state position tracking, possibly with
an oscillatory response, the stability of the proposed control
scheme can be easily shown. Since limj_,o p¥ = 0, the
objective function becomes

N
T = D@ k) Qrese(k +5),  (16)

3=0
which penalizes the distance of the reference signal a:r(ét) from

the origin. Since there always exist reference signal to the
inner loop which is closer to the origin, such that constraint
satisfaction is guaranteed, it is obvious that z,.¢(k) — 0
as k — oo is always feasible reference. Furthermore, it is
minimizer of objective function J;_,,, when no constraints
are active. Therefore x,.s(k) — 0, as k — oo. Since inner
loop ensures the reference tracking, we have z(k) — 0 as
k — oo.

Tuning parameter p in objective function (11) can be seen
as trade off between suppression of oscillation and speed of
convergence towards the origin. In other words, with p = 0,
the MPC reference shaper force the reference x¢ signal to
zero as fast as possible, subject to input constraints, while
with p = 1 the MPC is allowed to fully determine the
optimal reference signal for the inner loop. Since both, inner
controller and the model, which is assumed to be disturbance
free, are known to the MPC, it will try to cancel out the
action of the inner loop controller, and impose its own optimal
control action, leading to steady state error in the presence
of disturbance, since there is no integral action in the MPC
controller. By choosing 0 < p < 1, the oscillation suppression
is enabled in the beginning of transient response, while later
towards the end of the transient response the disturbance

rejection in the inner loop become active, forcing the system
convergence to the origin.

In order to enable a fast execution of the MPC law in this
paper we have used an interior point based tailored solver for
optimization problems, generated using online code generation
tool Forces[14].

IV. SIMULATION AND EXPERIMENTAL RESULTS

MPC control of LPV model of tower crane with refer-
ence shaping was tested on the laboratory model of the
3D tower crane described in section II, for the trolley and
hoisting subsystem. The optimization problems were formed
as described in section IIl. An interior point based tailored
solver for optimization problems were generated using online
code generation tool Forces[14]. Simulation and experimental
results of proposed controller, for simultaneous hoisting and
trolley movement, with prediction horizon N = 20 and sample
time Ts = 0.1s are shown in Fig. 4. The system has been
tested for the trolley position reference x,..y = 0.2 m and rope
length change from L = 0.3m to L = 0.8 m. Motor voltage
were constrained to lie within boundaries u € [—12V, 12V].
Simulation results show fast and precise positioning and
reduction of load swinging (less than 3°). Experimental results
show very good tracking of the reference position with slight
overshoot which is result of discrepancy between real system
and its mathematical model. Besides the proposed control
approach is real-time feasible since solving both optimization
problems took on average less than 2 ms on Intel Q6600@2.4
GHz.

V. CONCLUSION

In this paper a model predictive control of an LPV model of
3D tower crane with reference shaping is proposed. Instead of
replacing the existing crane controller we used MPC to modify
the position reference signal to ensure the optimal crane be-
havior, while satisfying the system and operational constraints.
Additionally, the proposed approach allows the user to make a
trade-off between suppression of load oscillations and speed of
the system convergence towards the origin, by proper tuning
of the scalar coefficient p. The coupling problems between the
trolley and the hoisting subsystems are successfully solved by
the proposed method. The results show that MPC reference
shaping in combination with the existing controllers ensure a
fast and accurate load positioning and prevents a significant
load swinging. Using a tailored solver generated specifically
for our problem makes the proposed control approach real-
time feasible, even when stringent time constraints are used.
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Fig. 4. Comparison of simulated and experimental obtained measurements when the rope length is oscillating between 30 and 80 cm, while the reference
position is oscillating between 0 and 20 cm.
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