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Modelling Periodic Motion for Background
Subtraction in X-Ray Imaging
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Abstract

Real-time guidewire segmentation in fluoroscopic images is a
necessary prerequisite for automated monitoring and navigation
systems to support minimally invasive endovascular interventions.
We propose a background model that is specifically adapted to the
X-ray modality and that is able to model periodic background
movement, for example induced by heartbeat or breathing. The
proposed background model requires about 1-2 periods of the
periodic background motion to learn the motion parameters and
can then be used to segment objects of interest such as guidewires
or needles. We demonstrate the feasibility of the proposed method

on one recorded X-ray sequence.

1 X-Ray Imaging Model

If a homogeneous and isotropic object is placed between the X-ray
source and the detector then the observed intensity can be
approximated as (narrow energy band, no beam diffusion)
[Hasegawa, 1987, Schram, 2001]

I=Toexp(= kidi) =Io] |7 (1-1)

where ui[cm™1] is the linear attenuation coefficient and v; is the
multiplicative attenuation factor of an ith object on the X-ray path.
Any factor of the quantity | [;vi may model an object of interest
(guidewire, contrast agent, stents and instruments).

Let ygw denote the multiplicative term of the guidewire. Then for
pixels where the guidewire is absent we observe the intensity

n=I| v (1-2)

and for pixels where the guidewire is present we observe the
intensity (thin guidewire assumption)

I, = exp(—ugwdgw)Io l_[iYi = Ygwl1. (1-3)
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3 Proposed Algorithm

The steps of the proposed background model are as follows (spatial
coordinates are omitted for clarity):

1. Compute the MAP estimate bmap[n] from the input image to
remove image dependent Poisson noise.

2. Segment the guidewire as follows:

(a) Compute tAhe ratio between bmwap[n] and the background
estimate b~ [n] given by the Kalman filter.

(b) Threshold the ratio image to segment the guidewire.
(c) Use the guidewire segmentation to set the measurement
term H[n] of the Kalman filter.

3. Proceed with the Kalman filtering (EKF or UKF) using the model
given by Eq. (2-1) (and Eq. (2-6)).

2 Kalman Filter

Proposed model is an extension of the stationary background model
presented in [Petkovi¢ and Loncari¢, 2010].

We use the Kalman filter to learn the periodic motion and model the
background.

Let i{[n] be observed X-ray intensity at single pixel. Proposed model
uses multiple states b[n] per pixel:

b[n]=b[n-1]+Q1[n]

i[n] = HInIb[n] + Q2[nT’ (2-1)

where b[n] is a vector encoding background properties, Q1 is
process noise, Q> is measurement noise (R; and Ry are noise
autocorrelations), and H[n] is time-dependent matrix.

State vector b[n] is a vector containing the Fourier series
expansion of the observed periodic background:

b’ = [bo b1 b_-1 by b- bx b_g ] , (2-2)
where the first element bg encodes the DC component of the
background and the kth pair (bk, b—_x) encodes the amplitude and
phase of the kth harmonic.

The measurement matrix H[n] is a row vector

H[n]=[1 0O; O, ... O ] (2-3)

where
O = [cos(wpktn) sin(wpktn)]. (2-4)

Matrix H[n] models both the periodic behavior of the background
and encodes the guidewire position.

If the guidewire is absent then the measurement matrix H[n] is a
row vector given by Eq. (2-3). If the guidewire is present then H[n]
Is simply multiplied by the guidewire attenuation factor ygw.

The product H[n]b[n] shows how the measured intensity i[n] is
decomposed using the Fourier series as:

+00
i[n] = bo + Y bk cos(wpktn) + b_ sin(wpktn). (2-5)
k=1

Frequency wp determines the base frequency of the input signal
decomposition into the Fourier series.

If wp is known, e.q. provided by EKG or similar measurement), then
the model (2-1) is linear and the Kalman filter is directly applicable.
If wp is not known then there are two possible solutions: (1) the
model of Eq. (2-1) is extend by assuming the constant frequency,

wp[n] =wp[n—1]1+ 03, (2-6)

where Q3 is the process noise, and extended Kalman filter (EKF) or
unscented Kalman filter (UKF) are used to jointly track b[n] and wp;
(2) if the limit to the number of terms N is defined then the discrete
Fourier transform in 2N + 1 points may be used instead of the
truncated Fourier series.
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We have performed one simulation experiment to estimate the
speed of convergence of the Kalman filter and one experiment on
the recorded patient data to demonstrate the feasibility of the
proposed method.

4-1 Speed of Convergence

First experiment uses simulated background on a 20 x 20 grid using
N = 4 (nine Fourier components) where background amplitude is
given by b[x, y,n] =

128 + 64 cos(k(x +y) — wptn) +32sin(k(x +y)/2 = 3wpth) + w,
where K = 1/2 is wave number, wp = 1 is frequency, and w is
pixel-independent white noise. Ground truth decomposition is

bo =128, by =64 cos(k(x+y)), bo1 =64sin(k(x+y)),

bz =32sin(k(x+y)/2), and b_3 = —32 cos(k(x + y)/2); all other bg
are zero.
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The mean squared error (MSE) for all nine background components
Is shown; note the MSE is large until the time-step 13 when it
steeply decreases and then stabilizes around the time-step 23. This
behavior is expected: MSE cannot decrease until at least one period
of the motion is recorded (minimum of 2N 4+ 1 =9 samples), and
after the first period the estimates are continuously corrected as
additional samples are accumulated. About 1 to 2 additional
periods are required to correctly estimate the noise. Effectively, the
proposed method “learns” the background motion for every pixel
Independently. Therefore, the proposed model requires sufficiently
long sequence that captures at least several periodic movements
that are required for the Kalman filter to reach the steady state.
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Conclusion

We have presented a background model that is able to capture the
periodic movement of the background in X-ray fluoroscopic
Imaging. The model requires one to two periods of periodic
movement to infer the parameters of the background motion and
can then be used to segment objects of interest such as guidewires
and needles. Obtained segmentation is directly usable in existing
guidewire and needle navigational systems that are described in

the literature as it complements spatial segmentation techniques
by directly identifying relevant moving structures and thus enables
removal of stationary anatomical line-type structures.

Potential applications include cardiac or abdominal endovascular
Interventions where guidewires, catheters or needles are used.
However, further work is required to validate the method on a
larger set of X-ray sequences where the ground truth is known.

4-2 X-Ray Sequence

Second experiment uses a recorded X-ray sequence of an
endovascular intervention in the abdominal aorta The sequence has
145 frames of 1024 x 792 pixels at 12 bits. About 13 pulsations due
to heartbeat are visible during the sequence therefore about 26 to
39 frames are needed to learn the motion. Segmentation validation
for frames 40-145 was performed yielding FPR = 0.06 and

TPR =0.83.

Two X-ray images showing abdominal intervention; A is an opaque
guidewire tip. Movement between (a) and (b) was due to breathing
and heart beat. (c) is the simple difference; due to involuntary
movement of the opaque tip A there are two strong false responses
B and C.

Example MSE error for frame 62 of 145. (a) is 62nd frame; ROl is
marked. (b) is enlarged difference for marked ROI using the
proposed background model. (c) is enlarged difference for marked
ROI using a simple time difference.
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