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Abstract— This paper concerns with wind turbine generator
fault-tolerant control that avoids system shut-down and enables
safe operation with less than nominal power production. We
focus on generator stator isolation inter-turn fault that can be
characterized before triggering the safety device and applied for
any type of generator used in wind turbines. A low complexity
model predictive tracking controller is proposed to achieve very
accurate flux modulation that prevents the fault propagation
while power delivery under fault is deteriorated as less as
possible compared to healthy machine conditions. Presented
fault-tolerant control strategy is developed taking into account
its modular implementation and installation in available control
systems of existing wind turbines to extend their life cycle and
energy production. Simulation results for the case of a 700 kW
wind turbine are presented.

I. INTRODUCTION

Renewable energy sources made a great political and
economic impact in the last 20 years and encouraged an
energy revolution that affected the whole world. After a huge
breakthrough and an average growth rate of 26% in last 5
years, wind energy today is a well-established technology
with total world installed capacity of approximately 238 GW
at the end of 2011 [1]. However, market competence of re-
newables and wind energy is an everlasting debate. Different
branches of science put a lot of effort into making renewables
a technology we can fully rely on.

Remote locations are best suitable for wind turbines
operation because of low-turbulent and strong winds. This
introduces difficult and expensive maintenance procedures
and rises availability concerns. Several fault-tolerant control
(FTC) algorithms have been introduced in [2] and they
mostly propose different kinds of redundancies for sensors
and electronic components. Focus here is on generator
electromechanical faults, which are besides gearbox and
power converters faults the most common in wind turbine
systems [3]. Following the rising share of direct-drive wind
turbines (18% of the market in 2010 [1]) and thereby the
usage of more complex and more fault-prone generators, the
focus on generator faults in wind turbines is expected to
further increase.

In our recent paper [4] we proposed an FTC, built on fault
detection and characterization procedure proposed in [5],
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which enables generator operation in the case of isolation
degradation and inter-turn short circuit in a stator winding
phase. Stator winding isolation faults cause about 35% of
machine faults [6][7] and are common for both asynchronous
and synchronous machines used in wind turbines (doubly-fed
induction generator, squirrel-cage induction generator, syn-
chronous generator with wound rotor, synchronous generator
with permanent magnets).

The FTC avoids wind turbine shut-down and enables sub-
nominal power production until next scheduled overhaul. The
algorithm is based on proper extension of widely adopted
control strategies used in wind turbines, mainly on torque
control loop with field-oriented control (FOC). An outer
control loop is designed to utilize FOC and achieve proper
machine flux modulation that stops further fault development
while power delivery under fault is deteriorated as less as
possible compared to healthy machine conditions. The whole
procedure needs to be very accurate and performed with the
high frequency of voltage supplied to the machine stator.

The flux modulation is periodical whereas the machine
stator flux is strengthened and weakened in a way that
its derivative never exceeds the limit imposed by the fault
characterization procedure. The problem of implementing the
flux modulation can be therefore observed as a reference
tracking problem. The reference can be calculated in ad-
vance, which gives a fine opportunity for applying a model-
predictive control (MPC) approach.

The main issue is that flux modulation has to be executed
at each discrete time step and sample time used for FOC
is required to be in hundred of microseconds scale. This
imposes a severe limit to the MPC algorithm complexity
and computational effort possibilities.

Focus of this paper is to develop a very fast model
predictive controller that ensures the stator flux reference
tracking and enables proper operation of the outer FTC loop.
Described algorithm is derived for the case of squirrel-cage
induction generator (SCIG) but whole FTC can be similarly
applied for any type of a generator used in wind turbines.

This paper is organized as follows. The mathematical
model of an SCIG and basic rotor FOC are presented in
Section II. A fault-tolerant approach and control algorithm
that enables wind turbine operation under stator isolation
fault is described in Section III. Section IV focuses on
the development of MPC and stator flux reference tracking.
Section V provides simulation results for the case of 700 kW
wind turbine. Conclusions are given in Section VI.



II. MATHEMATICAL MODEL OF AN INDUCTION MACHINE

A very common mathematical model of an AC squirrel-
cage induction machine represented in the two-phase (d, q)
rotating coordinate system and with rotor flux linkage
aligned with the d-axis (rotor flux vector ψ̄r is set to ψrd)
is described:

usd + ∆usd = ksisd + Ll
disd
dt

, (1)

usq + ∆usq = Rsisq + Ll
disq
dt

, (2)

with Ll = (Ls − L2
m

Lr
) and ks = (Rs − Ll

Tr
+ Ls

Tr
). Variables

usd,q are stator phase voltages in (d, q) coordinate system,
isd,q are stator phase currents, Ls, Lr and Lm are stator, rotor
and mutual inductances, respectively. Parameters Rs and Rr
are stator and rotor resistances and Tr = Lr

Rr
is the rotor time

constant. Voltages ∆usd and ∆usq are called decoupling or
correction voltages:

∆usd =
1

Tr

L2
m

Lr
imr + ωeLlisq, (3)

∆usq = −ωe
L2
m

Lr
imr − ωeLlisd, (4)

which ensure that the voltage value in one axis is not affected
by the voltage in other. The rotor flux is created by the
magnetizing current imr and ωe is the frequency of voltage
supplied to the stator. A rotor field-oriented control (RFOC)
equations from which the AC machine model (1)-(4) is
derived are:

imr =
ψrd
Lm

, (5)

isd = imr + Tr
dimr
dt

, (6)

ωsl = ωe − pωg, (7)

Tg =
3

2
p
L2
m

Lr
imrisq = kmimrisq, (8)

where ωsl =
isq

Trimr
is the slip speed, ωg is the mechanical

speed, p denotes the number of pole pairs and Tg is the
electromagnetic torque. The torque is controlled only by q
stator current component because magnetizing current vector
imr is dependent on the time lag Tr and is therefore kept
constant in the sub-nominal speed operating region.

Machine model given by (1) and (2) is suitable for
proportional-integral (PI) controller design. If integral time
constants TId = Ll/ks for d-current, TIq = Ll/Rs for q-
current and gain Kr are chosen, closed loop dynamics can be
represented as a first-order lag system with transfer function:

isd(s)

i∗sd(s)
=
isq(s)

i∗sq(s)
=

1

1 + τs
, (9)

where τ is a time constant defined with τ = Ll

Kr
. For more

information about machine modelling and FOC please refer
to [8].

III. FAULT-TOLERANT CONTROL

Some of the most common causes of stator isolation
faults are moisture in the isolation, winding overheating, or
vibrations. Modern voltage-source inverters also introduce
additional voltage stress on the inter-turn isolation caused
by the steep-fronted voltage surge [6].

If there is a short circuit between turns of the same
phase the time elapsed between incipient fault and triggered
safety device is about several minutes or even much longer,
depending on the stator winding method [7]. This may give
enough time for fault detection and adequate autonomous
reaction provided by control system to suppress the fault
from further spreading on other wind turbine components.

The fault is manifested as a shorted turn in the phase wind-
ing with very low resistance. It results in high currents that
flow through that turn and cause machine torque reduction
and local overheating. The goal of considered FTC is to keep
the current in the shorted turn below its rated value and stop
the fault from spreading on other components. This causes
the wind turbine to operate at below-rated power but protects
the generator until scheduled repair. This is very important
for remotely-located wind turbines since the shorted turns
induce further fault spreading up to the point where the
whole generator needs to be replaced.

The current flow is caused by induced voltage due to
variable magnetic flux and can be therefore restricted by ma-
nipulation of the flux. In the three-phase coordinate system
(a, b, c) stator voltage equation is defined with:

usx = isxRs +
dψsx
dt
≈ dψsx

dt
, (10)

where x denotes one of the phases. The goal for suppressing
the fault is formed as a restricted value of flux derivative:∣∣∣∣dψsxdt

∣∣∣∣ ≤ K. (11)

The value K is determined based on fault identification
procedure through machine fault monitoring and characteri-
zation techniques [5]. Following from (10) this restricts the
induced voltage in the faulted turns and consequently also
the circulating currents responsible for local overheating.
Generally, the stator flux is considered sine-wave (in the
fundamental-wave approaches, such as FOC) with amplitude
|ψs|, angular frequency ωe and phase offset ϕx. The flux in
phases x = a, b, c is represented with:

ψsx(t) = |ψs|(t) sin(ωet+ ϕx). (12)

Flux amplitude envelope denoted with |ψs|(t) in (12) is time-
variable and must be taken into account when calculating the
flux derivative for fault suppression:

dψsx(t)

dt
=
d|ψs|(t)
dt

sin(ωet) + |ψs|(t)ωe cos(ωet). (13)

Considering the design of fault-tolerant control strategy,
one approach is to use constant but weakened flux ψs such
that |ψs|ωe is kept below value of K. Wind turbine pitch
control is used then to lower the aerodynamic torque in order
to impose the torque balance. The weakened flux is shown



in Fig. 1 as Faulty A waveform. The approach lowers the
generator power production unnecessarily. In the sequel we
present a method for significantly improving the wind turbine
power production while suppressing the fault at the same
time.

From (11) it follows that in order to stop the fault from
spreading, the stator flux waveform must never be allowed
to exceed a restriction shaped as a triangular waveform |Kt|
shown in Fig. 1 (dash-dot). The restriction also represents the
flux waveform that enables maximum power production in
the faulty machine state. Therefore, our goal is to utilize the
existing control strategy and FOC to achieve the triangular
waveform:

ψsa(t) = Kt, t ∈ [− π
2ωe

, π
2ωe

] + 2kπ
ωe

ψsa(t) = −Kt+Kπ, t ∈ [ π
2ωe

, 3π
2ωe

] + 2kπ
ωe

(14)
An appropriate flux amplitude envelope is chosen such

that
∣∣∣dψsx

dt

∣∣∣ = K (for phase a with ϕa = 0):

|ψs|(t) =
K
ωe
ωet

sin(ωet)
, (15)

with minimum absolute value at angles ωet = 0, π, ..., and
maximum at ωet = π/2, 3π/2...:

|ψs|(0) = K
ωe
,

|ψs|
(
π
2

)
= K

ωe

π
2 .

(16)

Transformed to the (d, q) and RFOC domain, stator flux
linkage is defined with ψ̄s = ψsd + jψsq where:

ψsd = Llisd + Lm

Lr
ψrd,

ψsq = Llisq,
(17)

and relation |ψs| =
√
ψ2
sd + ψ2

sq holds.
Changing the ψrd is very slow due to large rotor time-lag

Tr, so we choose to manipulate the flux ψsx only through
machine fast dynamics (9). Proper values of current compo-
nents isd and isq are chosen to achieve the triangular form
in Fig. 1 while taking into account: (i) |is| must not exceed
predefined nominal value isn, (ii) desired machine torque and
corresponding isq , (iii) the maximum flux restriction (rated
value) due to saturation. The value of ψrd is considered
constant during the manipulation of stator flux. In practice

Fig. 1. Stator flux waveforms for healthy and faulty machine.

it is influenced by changing the isd current and it slowly
fluctuates around mean value of the chosen ψrd.

If parameter K from the fault condition (11) is too large
or chosen ψrd value limits the freedom for desired fast
dynamics, desired amplitude scope shown in Fig. 2 with peak
values from (16) is not achievable. Therefore the minimum
value is set to ψs min = K

ωe
and when the amplitude envelope

|ψs|(t) reaches value of ψs max (at time instant tm) it is fixed
to that value. The objective (11) is still achieved with slightly
reduced maximum possible power production and obeyed
machine constraints. Stator flux takes the form presented as
Faulty B in Fig. 1. The amplitude envelope is shown in Fig. 2
with dash-dot line representing the case when triangular
waveform is achievable and full line for the case of Faulty B
waveform. Note that amplitude envelope frequency is twice
the frequency of desired Faulty B waveform. The time instant
tm can be obtained from condition:

Ktm = ψs max sin(ωetm). (18)

As the q-current is responsible for maintaining the constant
torque, the d-current dynamics determines, according to (17),
the dynamics of |ψs|(t). Fastest achievable transient of isd
is determined with inverter limitation. Considering the worst
case scenario and a typical value of Udc in wind turbines,
even the maximum stator flux derivative at t = π

2ωe
is

achievable and this issue is not explicitly treated in the
derived FTC.

Desired generator torque reference T ∗g dictated by the
wind turbine torque control loop [9] determines adequate
value of ωe and imr (or ψrd) used to achieve correct
ψs min and ψs max. Current references i∗sd and i∗sq are then
calculated to obtain desired stator flux wave. The algorithm
is given in the Algorithm 1.

Step 6 is executed at each discrete time step, while steps
1-5 are executed once in every stator flux modulation period
(Fig. 2) for less computational effort. Steps 1-5 require
solving of simple algebraic equations i.e. quadratic and
square root equations but can be simplified even more using
look-up tables. Initialization of the algorithm is executed
only once when a fault is diagnosed and can also be obtained
from look-up table ωg1(K).

Using the described method, an exemplary graph of avail-
able speed-torque points under machine fault is shown in
Fig. 3. Normal operation of the healthy generator is bounded

Fig. 2. Flux amplitude from (15) for achieving
∣∣∣ dψsx
dt

∣∣∣ ≤ K.



Algorithm 1 Fault-tolerant control for stator fault
1. Calculate stator flux mean value ψs mean from Fig. 2,

corresponding imr mean and isq mean using (7), (8) and
(17) with instantaneous torque reference T ∗g , steady state
condition isd = imr and rated slip condition ωsl = ωsln;

2. Obtain ωe from (7) and instantaneous speed ωg;
3. Obtain ψs min from (16);
4. If obtained ψs mean < ψs min apply simple flux weak-

ening method with i∗sd = imr mean, else apply the flux
modulation:

5. Find tm and ψs max from obtained ψs mean and (15);
6. Apply i∗sd(t) calculated from k, ωe, ψs max, (15) and (17);

apply i∗sq(t) calculated from T ∗g , imr mean and (8);
7. Initialization of FTC: Set ωg1 = ωgn and execute steps

1-6 until ψs max ≤ k
ωe

π
2 from (16). Decrease ωg1 by

small value εω at each iteration; set ω∗g equal to the
obtained ωg1 at the last iteration.

with rated machine torque Tgn and rated speed ωgn and
pitch control is responsible to keep the operating point
between boundaries. The curve denoted with Optimum power
represents optimal operating points of wind turbine at which
the power factor coefficient Cp and power production is at
maximum value. Optimum power production is entrusted to
torque controller [4][9].

For the case of diagnosed fault, dashed area denotes all
available generator torque values that can be achieved for
certain generator speed. Generator torque denoted with Tf
is the largest available torque that can be achieved under
fault condition. Below speed ω

′

g generator is operating in
the safety region and no fault-tolerant control is needed. It
follows that up to the speed ωg1 it is possible to control
the wind turbine in the faulty case without sacrificing power
production. However, from that speed onwards it is necessary
to use blades pitching in order to limit the aerodynamic
torque and to keep the power production below optimal in
order to suppress the fault from spreading. The speed control
loop is modified such that instead of reference ωgn the
reference ωg1 is selected. Interventions in classical variable

Fig. 3. Available torque-speed generator operating points under fault
condition (shaded area).

Fig. 4. Control system of wind turbine with fault-tolerant control strategy.

speed variable pitch wind turbine control that ensure fault-
tolerant operation are given in Fig. 4 (red blocks).

IV. MODEL PREDICTIVE CONTROL

In [4] we relied on inner FOC current control loops for
flux modulation, which have introduced overshoot of the flux
derivative constraint K. To overcome the problem we used
lower value of K constraint as a redundancy, which also
resulted in unnecessary loss of the power production.

Focus here is to achieve higher power production with
model predictive control based on the presented induction
machine model. The prediction of states and reference values
is therefore used in computation of control law. For that
purpose we discuss optimal control for the flux modulation
reference tracking. The algorithm has to be implemented
on-line and applied at every time instant while reference
tracking has to be performed very accurately to fulfill the
task of the outer FTC loop to restrain the fault propagation.
From the controller-design aspect, the first requirement is
the crucial one and algorithm has to be of low complexity
to fit in the FOC sample time scale, which is usually about
hundred of microseconds. Since the modulation is performed
periodically, with maximum of one period ahead of known
reference, using a conventional linear quadratic regulator
(LQR) with infinite horizon problem is not an option.

We use therefore an unconstrained quadratic optimal con-
trol approach with finite prediction horizon [10]. Respecting
of constraints is performed by the slow FTC loop, which is
executed once per flux modulation period. The task of track-
ing controller is to calculate the correct d-current reference
and pass it forward to the FOC current control loop in such
way that desired stator flux reference is accomplished. Both
d-current and stator flux dynamics (6) and (9) have to be
included in the design process:

isd(s)

i∗sd(s)
=

1

1 + τs
,

ψrd(s)

isd(s)
=

Lm
1 + Trs

.

The problem is therefore formed as control of a discrete
two-state linear system:

xk+1 = Axk + Buk,
yk = Cxk,

(19)



where states and inputs are:

x =

[
isd
ψrd

]
, u = i∗sd.

The ψs from (17) comprises isd and ψrd in the square-
root quadratic sum and using it in the quadratic criteria of
the cost function would be too complex. Since ψsd holds
the majority of the stator flux ψs (more than 99% in our
case) and ψsq is practically constant we choose not to
consider ψsq(isq) dynamics. This way the forming of cost
function and minimization criteria is significantly simplified.
Therefore, with yk = ψsd,k, state, input and output matrices
of the system are:

A =

[
1− Ts

τ 0
Ts

Tr
1− Ts

τ

]
, B =

[
Ts

τ
0

]
,

C =
[
Ll

Lm

Lr

]
,

where Ts is the sampling time.
Cost function for tracking problem is chosen:

J =

N∑
k=0

qk (yk − rk)
2
, (20)

where N , rk, qk are prediction horizon, reference prediction
and tracking error weighting factor, respectively. The penal-
ization of the control signal u is left out because of very
dynamic flux modulation trajectory changing.

Generally, states in time-step k can be described with:

xk = Akx0 +

k−1∑
i=0

AiBui, (21)

and represented in the matrix form as:

X = A∗x0 + B∗U ,
Y = C∗X , (22)

where X ,U ,Y,A∗,B∗,C∗ are model matrices on the pre-
diction horizon N .

The quadratic cost function is now:

J = (C∗X −R)
>
Q (C∗X −R) , (23)

where R = [r0 r1 . . . rN ]> is a vector of future reference
values. By putting model matrices, the cost function obtains
the final form:

J = U>HU + fU + g, (24)

where

H = B∗>C∗>QC∗B∗,

f = 2x>0 A
∗>C∗>QC∗B∗ − 2R>QC∗B∗,

g = x>0 A
∗>C∗>QC∗A∗x0 − 2R>QC∗A∗x0 + R>QR.

The solution that minimizes J [10][11] is given by:

U∗ = −1

2
H−1f>. (25)

It may be observed that H−1 is a constant matrix and can be
calculated off-line. This significantly decreases the algorithm

computational effort and improves the execution speed. The
reference values R are predicted using (15), (17) and (18)
to achieve the waveform from Fig. 2.

From (7) it follows that ωe is dependent on isd and ψrd,
which is not considered in predictive control. Instead, the
weighting matrix Q is chosen to enhance the influence of
closer prediction steps and attenuate the farther. Elements of
diagonal matrix Q are obtained from:

qi,i = 1.1−i, i = 0, .., N. (26)

Estimation of FOC variables [8] is exploited to form the
initial state vector x0 = [isd0 ψrd0]> for each time step.
Control law is applied based on receding horizon control
approach whereas u0 is segregated from U∗ and passed to
inner current FOC loops. The MPC controller is used to
calculate the i∗sd in Step 6 of Algorithm 1.

V. SIMULATION RESULTS

This section provides simulation results for a 700 kW
MATLAB/Simulink variable-speed variable-pitch wind tur-
bine model with a two-pole 5.5 kW SCIG scaled to match
the torque and power of 700 kW machine.

Generator parameters are: p = 1, Un = 186.67 V, In =
14.07 A, fn = 50 Hz, Ls = Lr = 0.112 H, Lm = 0.11
H, Rs = 0.3304 Ω, Rr = 0.2334 Ω and PI controller gain
is Kr = 6. Stator flux rated value is ψsn = 0.625 Wb and
sample time is chosen Ts = 2 · 10−4 s. Moment of inertia
of wind turbine and generator, reduced to the generator side
is J = 72.11 kgm2.

The prediction horizon of N = 10 has proven adequate for
presented control problem. For FOC variables estimation we
use an unscented Kalman filter proposed in [12], and for this
particular purpose applied in [13]. In the sequel simulation
results with diagnosed fault and

∣∣∣dψsx

dt

∣∣∣ = K = 100 Wb/s
are presented. The isq current is used only to compensate
slow imr fluctuations in order to maintain the desired torque
and stator flux is manipulated only by isd as presented in
Fig. 5. The figure also shows influence of predicted machine
dynamics used in isd reference calculations.

Figure 6 shows very accurate reference tracking of stator
flux amplitude envelope from (15) with the proposed model
predictive controller. Corresponding stator flux waveforms in
phases a, b, c are shown in Fig. 8. Following from figures,

Fig. 5. Direct current component. Dashed is the reference value.



Fig. 6. Stator flux magnitude |ψs|(t). Dash-dot line is for the case without
MPC.

Fig. 7. Stator phase currents.

the required restriction formed as triangular waveform is
satisfied in the targeted phase (denoted as faulty phase in
figures 8 and 9) and the flux derivation never exceeds the
restriction K (Fig. 9). Comparison with the flux modulation
achieved without described predictive controller is also given
in figures. Phase currents calculated to achieve desired flux
waveforms are shown in Fig. 7. Currents follow a sinusoidal
shape with deviations at peak values.

VI. CONCLUSIONS

An extension of the conventional wind turbine control
structure is proposed to prevent the generator stator isolation
fault propagation and enable faulty wind turbine operation
with reduced power. The method is presented on a squirrel-
cage generator with diagnosed short circuit between turns of
the same phase. A low complexity, explicit model predictive
controller has been proposed for very accurate flux modula-
tion tracking. The power delivery under fault is deteriorated
as less as possible compared to healthy machine conditions.
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