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ABSTRACT 

Microgrids, groups of loads and generators in the same location with centralized control, have 

the ability to balance the variability and the forecast error of the renewable sources (RES) 

within them, thus reducing the need for the conventional reserve. The main goal of this paper 

is to explore the influence of the microgrid components on its ability to operate independently 

from the distribution grid. A deterministic model using mixed integer linear programming 

(MILP) is developed to simulate the microgrid operation over one year period and used to 

determine the optimal microgrid parameters with respect to the amount of unused energy.  

 

In the second part of this paper a developed model is expanded with model predictive control 

(MPC) approach to capture the behaviour of the microgrid connected to the rest of the 

distribution grid, modelling the uncertainties of forecasting RES production by stochastic 

programming. The model is capable of evaluating the impact of variable energy prices and the 

impact of energy balancing tariffs depending on the amount of balancing energy needed on 

the operation of flexible units such as electric heat pumps (EHP), micro Combined Heat and 

Power plants (µCHP) and heat storage (HS). 
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1. INTRODUCTION 

Integration of renewable energy sources (RES) today is largely driven by governmental 

incentives, especially for RES on a small domestic scale. As the share of RES increases, the 

concept of incentives becomes unsustainable and the need to develop new approaches 

becomes inevitable. Traditionally, there has been a separation between the production and 

consumption of electricity where consumption has been regarded a passive part with very 

little capabilities for control. Therefore any generation mismatch caused by variations in RES 

generation had to be compensated by other generating units. Today the development is 

shifting towards enabling the flexibility from the consumer, ranging from flexible demand to 

distributed generation. The range of controllable and RES technologies at the low voltage 

level covers a wide range of units: photo-voltaic units (PV), wind power plants (WPP), 

electric heat pumps (EHP), micro combined heat and power units (µCHP), thermal energy 

storage (HS), battery storage (BS) etc. Aggregating these technologies creates a market entity 

capable of not only isolated operation but also interaction with the electric system. 

 

Any such system could be integrated with the rest of power grid’s control system by means of 

aggregation and market mechanism. Although ideas of virtual power plants and standalone 

microgrids are not new [1], there is still a lack of models capable of representing the 

behaviour and scheduling of such clusters of units. A good model must provide robust 

response of microgrid to fluctuations of connected RES and, if needed, has to ensure stand-

alone operation with minimum to no interaction with the rest of the electrical grid. 

 

The methodology for decision-making on local microgrid level is not simple to find and has 

many key factors that have to be included. Microgrid comprises of both dispatchable units (e.g. 

distributed generators) needed to balance the microgrid and uncontrollable units such as RES 

whose production cannot be precisely estimated. Additionally, flexible loads (FL), energy 

storage systems (EES) and connection to the rest of the system have to be modelled in order to 

find optimal control approach. There are several methods found in literature that tackle the 

problem of finding the best control algorithm. In [2] Sanseverino et al. look for a solution of 

optimal operation of a microgrid using a non-dominated sorting algorithm that includes forecast 

error. Different approach using MILP (Mixed Integer Linear Programming) for a mid-term 

virtual power plant dispatch optimization was investigated in [3] by Pandžić et al. where 

uncertainty of the wind and solar power generation is settled using storage in order to provide 

flexible operation. Day ahead planning horizon is more commonly used when operation of 

microgrid is considered [4]. Furthermore, complex and computationally demanding approaches 

such as multiagent modelling presented by Want et al. in [5] or evolutionary strategies presented 

by Basu in [6] do not guarantee global optimality of the solution. 

 

MILP approach coupled with Model Predictive Control (MPC) has recently proved to be an 

efficient approach since it is based on future predictions as well as present state of the system. 

This combination provides a good mechanism to deal with uncertainty of predictions. 

Optimization centred around battery storage is presented in [7] by Malysz et al. where battery is 

used to maximize economic benefits for both the customers and utility operators. Perkovic et al. 

[8] used receding horizon model predictive control for smart management of residential type 

microgrid while taking into account Plug-in Electric Vehicles (PEV) as energy storage with the 

goal of maximizing profit. Energy management system using rolling horizon strategy for an 

isolated renewable-based microgrid is presented by Marietta et al. in [9]. Another MPC control 

algorithm which minimizes the operation cost, tested on a real microgrid, and proves the 

feasibility of proposed approach was described by Parisio et al. in [10]. 
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With respect to different or multi objective functions, the available literature proposes several 

approaches and possibilities. As stated before, genetic algorithms can incorporate multi-objective 

optimization and consider both, for example, economic benefits and emission reductions, as in 

example by Deng et al.[11], but the final result is not guaranteed to be the global optimum as it is 

the case with MILP. Many optimization algorithms set minimization of operational costs or 

maximization of profit as objective functions which, in most cases, are dual functions. Recently, 

approach that minimizes emissions and emissions cost has been presented in [12], proposed by 

Ren et al., trying to reduce environmental impacts of energy production. It is important to notice 

that there are currently no integrated models including all the important elements (PEV, FL, 

battery and heat storage, µCHP etc.) and providing a comprehensive study of operational 

costs, energy usage, energy curtailment, losses, equipment degradation information etc. The 

focus of this paper is on defining the flexibility that can be gained by optimally coupling heat 

storage, µCHP, EHP and flexible demand in microgrid operation.  

2. MAIN CONTRIBUTIONS 

In this paper control-oriented approach for microgrid operation is developed. Two models are 

developed, deterministic and rolling unit commitment incorporating MPC. These models are 

used to simulate daily operation of a microgrid for a period of one year. The microgrid consists 

of 300 households (each modelled by a specific heat and electricity demand profile), multiple 

DG units (µCHP, EHP, boiler and heat storage), and household installed RES units, in particular 

solar and wind. 

 

In all the simulations certain assumptions were made: 

 microgrid optimization and operation is primarily market driven and voltage and 

frequency stability are assumed to be controlled on the lower level and are not 

considered; 

 microgrid consists of the following elements: PV arrays, wind turbines, µCHP units, 

EHP units, flexible and inflexible loads, heat storage, and boiler units. The concept 

relays only on units widely adopted by the consumers and thus does not include BS or 

PEV. It should be noted that the model can easily be expanded to include additional 

technologies; 

 central controller is assumed to have all the required information about the present state 

of the microgrid (boiler, EHP and µCHP operational points, house heat storage unit 

capacity, market energy prices, RES production); 

 energy exchanged with the grid is assumed to be bought/sold at day-ahead market; 

 microgrid is small enough to act as a price taker and does not influence the formation of 

prices on the market; 

 connection with the distribution grid is unconstrained; 

 flexible consumers are not compensated for rescheduling their output; 

 sampling time is constant ( k k-1t t   ) and the ration between power and energy is 

therefore also constant. 

 

The first contribution of the paper is defining the value of different flexible components, such 

as EHP, µCHP and Flexible Load (FL), on microgrids ability to operate in the off grid mode. 

A mathematical model based on Mixed Integer Linear Programming (MILP) is developed to 

simulate the off grid operation over one year period, determining the optimal parameters with 

respect to the amount of unused energy on microgrid level. This series of simulations was 

done with deterministic input data. A comparison of deterministic model simulation off-grid 

and on-grid is also given. Determined optimal sizes of installed wind aggregates and PV units for 
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given microgrid configuration are afterwards used to study how much flexibility can be gained 

by altering heat storage capacity, flexible demand percentage and percentage of specific 

controllable DG unit installed with consumers. The flexibility is evaluated as the yearly amount 

of unused energy; curtailed RES electricity and wasted heat.  

 

The second contribution of the paper is the rolling unit commitment model incorporating MPC 

algorithm optimizing the microgrid operation on a daily basis considering the uncertainties 

inherent to the RES production and demand forecasting. Adding MPC improves the system's 

ability to react to prediction errors since the controller takes into account a series of future 

moments instead of making decision just based on current status of the system. The developed 

model minimizes day ahead scheduling error of the microgrid as well as the operational cost 

based on penalizing export/import balancing energy cost and total fuel cost.  

 

It should be noticed that, through a number of analyses, the paper clearly recognizes benefits 

of coupling and coordinated operation of µCHP and EHP units, supported with HS as heat 

buffer, in order to compensate for the fluctuating nature of RES production and to minimize, 

or if possible totally exclude, balancing interaction with distribution network. This way 

microgrid can operate as independent entity at any time needed, follow the scheduled 

import/export plan and compensate for unpredictable fluctuations in RES production. 

3. MICROGRID SYSTEM COMPONENTS AND MODELING 

Basic concept of the modelled microgrid is shown on Figure 1. As it can be seen the microgrid 

consists of heat and electricity consumers (households), electricity producers (µCHP), heat 

producers (EHP, µCHP and auxiliary boilers) and buffers decoupling heat and electricity 

demand - heat storages (HS). The possibility of direct electrical energy storage is not 

modelled, even though the heat storage in combination with µCHP and EHP units can provide 

a certain ability to change the electrical power output [13], [14]. All microgrid components are 

modelled using CPLEX solver FICO Xpress [15]. Data manipulation and results extraction was 

done using MatLab 2013. 
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Figure 1. Schematic of a microgrid 
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In tables 1, 2 and 3 a list of indices, input and decision variables is given for easier understanding 

of the mathematical formulation parameters used in optimization problem formulation. 

 

Table 1. Parameters of the optimization model 

Parameter Description 

K  Total number of households 

i  Counter referring to i-th household 

t  Current simulation step 

maxT  Time horizon of the simulation [hour] 

  Simulation time step duration [hour] 

( )ngc t  Natural gas supply price [€/kWh] 

P  Penalty factor for waste heat and wind energy 

_ max ( , )chpH t i  Maximum heat production of µCHP unit [kWh] 

_ ( , )chp e t i  Electric efficiency of µCHP unit 

_ ( , )chp t t i  Thermal efficiency of µCHP unit 

_ max ( , )ehpH t i  Maximum heat production of EHP unit [kWh] 

( , )COP t i  Coefficient of performance of EHP unit 

_ max ( , )abH t i  Maximum thermal output of a boiler unit[kWh] 

( , )ab t i  Boiler efficiency 

_ max ( , )hsH t i  Maximum heat storage capacity [kWh] 

( , )hs t i  Heat storage efficiency 

flexp  Percentage of total electrical load defined as flexible 

_ max ( )flexC t  Maximum capacity of flexible load being rescheduled [kWh] 

 

 

Table 2. Forecasts (inputs of the optimization algorithm) 

Parameter Description 

( , )dH t i  Heat demand of i-th household [kWht] 

( , )dE t i  Electricity demand of i-th household [kWhe] 

( )windE t  
Standardized per 1 kW installed power hourly wind production 

[kWh]  

( )PVE t  
Standardized per 1 kW installed power hourly PV production 

[kWh]  

( )impc t  Import electricity price [€/kWh] 

exp ( )c t  Export electricity price [€/kWh] 
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Table 3. Decision variables of the optimization model 

Parameter Description 

( , )chpH t i  Heat production of µCHP unit [kWh] 

( , )hsH t i  Heat flow through heat storage [kWh] 

( , )hsC t i  Heat storage capacity at simulation step t [kWh] 

( , )abH t i  Heat production of a boiler unit [kWh] 

( )flexE t  Flexible loads being rescheduled [kWh] 

_ ( )wind genE t  Used wind energy [kWh] 

_ ( )wind curtE t  Curtailed wind energy [kWh] 

windX  Installed wind power 

PVX  Installed PV power  

)(tEimp  Imported energy from the grid [kWh] 

exp ( )E t  Exported energy to the grid [kWh] 

( )F t  Total fuel energy used [kWh] 

 

3.1 Micro Combined Heat and Power unit (µCHP) 

A number of households with larger heat consumption use µCHP units as main heat source. 

µCHP units are modelled with peak power of 8 kWt and technical minimum of 1,6 kWt. The 

coefficient   is used since technical min/max constraints are expressed in kWh values. This 

way the model is able to capture different time step resolutions which usually depend on the 

market structure and settlement periods in the observed market. In all simulations in this 

paper a 0,5 hour time step is considered. 

 

_min _max( ) ( , ) ( )chp chp chpH i H t i H i      (1) 

 

It is assumed that µCHP units can adjust their output fast enough and no ramp constraints have 

been introduced. Production of electrical energy of i-th µCHP unit in every time step: 

 

_

_

( , )
, ) , )

( , )

chp e
chp chp

chp t

t i
t i t i

t i


     


 (2) 

 

Fuel consumption of all CHP units is: 

 

_
_

( , )
( )

( , )

K
chp

chp total
chp ti

H t i
fuel t

t i



  (3) 

3.2 Electric Heat Pump unit (EHP) 

A number of households have EHP as main heat source. EHP is modelled with its peak heat 

power of 10 kWt and coefficient of performance COP which varies throughout the year. 

Assumed EHP type is air-water and is therefore dependent on the outdoor temperature and 

temperature difference. Households that have no EHP have the ( , )ehpH t i equal to 0. 
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_ max( , ) ( , )ehp ehpH t i H t i   (4) 

 

Heat production of EHP unit in every time step and household is: 

 

, )
, )

( , )

ehp
ehp

t i
t i

COP t i

 
    (5) 

3.3 Auxiliary boiler (AB) and heat storage (HS) 

All households are equipped with gas boiler which is being used when heat demand is too large 

to be covered by primary heat sources (EHP or µCHP) or when optimization algorithm 

dispatches it under right circumstances. Boiler has peak power of 10 kWt and efficiency of fuel 

conversion is 85%: 

 

_ max( , ) ( , )ab abH t i H t i   (6) 

_

( , )
( )

( , )

K
ab

ab total
abi

H t i
fuel t

t i



  (7) 

 

Additionally all households have a simple water tank, or heat storage with the capacity 

_ maxhsC of 6 kWh. To store that amount of heat, assuming water temperature difference of 30 

to 35 °C, approximately 150 litters of water are needed. Heat losses on hourly bases are 

assumed to be 4%, which corresponds to losses of 2% every half an hour. Heat storage has 

constraints due to its charge/discharge time: 

 

max_t,i) ( , )hs hsH C t i    (8) 

 

Storage capacity limit and behaviour are described with following inequalities: 

 

_ max( , ) ( , )hs hsC t i C t i  (9) 

( , ) , ( 1, ) ( , )hs hs hs hsC t i t i C t i H t i       (10) 

3.4 Heat demand 

Daily heat demand is modelled with 5 different curves which are evenly assigned among all 

households (Figure 2). The heat consumption profiles are extracted from data available for 

United Kingdom [16]. Heat demand throughout the year is modelled with seasonal variations 

each with its 5 different heat demand profiles.  
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Figure 2. Daily heat consumption for different household types for a winter day 

 

Heat demand of each household is modelled with following inequality: 

 

( , ) ( , ) ( , ) ( , ) ( , )d chp ehp ab hsH t i H t i H t i H t i H t i     (11) 

 

To ensure the safe microgrid operation under all circumstances waste of heat is allowed: 

1

( ) ( , ) ( , ) ( , ) ( , )
K

waste chp ehp ab hs

i

H t H t i H t i H t i H t i


     (12) 

 

3.5 Flexible electrical load 

A simple model to represent demand side management is incorporated by defining a percentage 

of total electrical demand that can provide flexible response. Initially the percentage flexp  is set 

to be 15% of ( )dE t at any give period:  

 

_( ) ( ) ( )flex d flex total flex dp E t E t p E t      (13) 

 

( )flexE t is positive for load reduction and negative for load increase. 

The information about the total amount of shiftable loads that are being rescheduled at every 

time step is modelled using flexible load maximum capacity: 

 

_max _max( , ) ( , ) ( , )flex flex flexC t i C t i C t i    (14) 

( , ) ( 1, ) ( , )flex flex flexC t i C t i E t i    (15) 

3.6 Renewable energy sources 

Input data for RES modelling are measured hourly values over a one year period [17] depicted 

on Figure 3. The input data is standardized for 1 kW of installed wind or solar power. 
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Figure 3. Standardized wind and solar production 

 

One of the goals of deterministic model is to determine optimal installed values of wind turbines 

and PV and therefore their production is defined as deterministic input data ( ( ), ( )wind PVE t E t ) 

that is standardized to 1 kW of installed power, multiplied with their installed capacity that is 

being optimized ( ,wind PVX X ). The resulting number _ ( )wind realE t is the actual production of 

PV and wind renewable energy sources measured in kWh that is obtained by multiplying the 

standardized to 1 kW input data of wind/PV production ( ( ), ( )wind PVE t E t ) and the actual size of 

the installed RES capacity ( ,wind PVX X ) that is being optimized. Results obtained from the 

optimization algorithm are optimally chosen values of installed renewable energy sources 

capacities. 

 

_ ( ) )wind real wind windE t E t X    (16a) 

_ ( ) )PV real PV PVE t E t X    (16b) 

 

The correlation between consumption and PV production is much better than one with wind 

production. The peak production of PV array occurs during the day when the consumption is 

higher. Therefore only wind curtailment is introduced: 

 

_ _ _( ) ( ) ( )wind curt wind gen wind realE t E t E t   (17) 

3.7 Electrical demand 

Similarly to heat demand electrical demand is on a daily basis represented with 3 different load 

consumption profiles (winter, spring/autumn, summer) depicted on Figure 4. 
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Equilibrium between electricity production and consumption must be achieved at every time 

step: 

exp _ _

1 1 1

( , ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( , )
K K K

d ehp imp pv real wind gen chp flex

i i i

E t i E t E t i E t E t E t E t i E t i
  

        

 (18) 

3.8 Cost function 

Total fuel used is equal to fuel used by boiler and CHP units: 

 

_ _( ) ( ) ( )chp total ab totalF t fuel t fuel t   (19) 

 

Day ahead market prices and are taken from the ELEXON (EEX) [18]. The prices are therefore 

real prices of electricity in €/kWh that change every time step (half an hour). No price 

forecasting is done and prices are taken to be known for the observed period. 

Minimization of total microgrid operation cost is the objective function of the optimization 

model: 

max
exp exp

_1

( ) ( ) ( ) ( ) ( )

( ) ( )

T
ng imp imp

wind curt wastet

F t c t E t c t E t c t
COST

P E t P H t


       
  

     
  (20) 

 

Penalty factor P is used to highlight the importance of avoiding energy waste and losing 

potential wind production. Factor 300 was used in off-grid simulation of a deterministic 

model when optimal RES installed values were determined. 

 

4. DETERMINISTIC MODEL RESULTS 

The deterministic model described in the preceding section is run for max 17520i  steps 

representing half an hour periods during one year time. All parameters are shown in the 

following table (Table 4). 
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Table 4. Simulation parameters initial values 

Parameter Unit Value 

Simulation time maxT  [hour] 8760 

Simulation time step duration   [hour] 0,5 

Number of households K  -- 300 

Penalty factor for unused energy P  -- 300 

Natural gas price ngc  [€/kWh] 0,025 

Export electricity price exp ( )c t  [18] [€/kWh] 
Varies every 

time step 

Import electricity price ( )impc t  [18] [€/kWh] 
Varies every 

time step 

Household heat storage capacity _ maxhsC   [kWht] 6 

Flexible load share flexp  [%] 15 

Maximum flex load capacity _ maxflexC  [kWh] 50 

Electric efficiency of µCHP unit _chp e  -- 0,38 

Thermal efficiency of µCHP unit _chp t  -- 0,55 

Maximum thermal output of CHP unit _ maxchpH  [kWht] 8 

Maximum thermal output of EHP unit _ maxehpH  [kWht] 10 

Share of households with CHP based heating [%] 45 

Share of households with EHP based heating [%] 45 

Share of households with only boiler based heating [%] 10 

Coefficient of performance of EHP unit ( )COP t  -- 

3,5 summer 

3 inter 

2,5 winter 

Maximum thermal output of a boiler unit _ maxabH  [kWht] 10 

Boiler efficiency ab  -- 0,85 

Maximum heat storage capacity _ maxhsC  [kWht] 6 

Heat storage efficiency hs  -- 0,98 

Heat storage discharge/charge rate per time step _ maxhsE  [kWht] _ maxhsC    

 

Off-grid operation is simulated where exp( ), ( )impE t E t are equal to 0. 

Optimal values of installed wind and solar power were calculated: 

 

 _ 65wind optX   and _ 113PV optX  . 

Therefore the optimal installed capacity of wind is 65 kW and PV is 113 kW. These results 

are obtained in the deterministic environment. 

 

These calculated values are later used as input parameters (reference) in MPC model where 

uncertainty is introduced.  

 

As described before high penalty factor P , in the objective function for waste energy, 

achieves that only 0,31% (12.989 kWh) of total energy spent has to be spilt (Figure 5). Heat 

waste occurs in off-grid mode when there is not enough electrical energy (EE) production to 

cover the demand (little to no wind or sun); in those cases µCHP units have to produce more 

and consequently increase heat production which is not needed and cannot be stored in HS. 
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Additionally, similar case happens when there is a surplus of electrical energy (high wind and 

sun generation) so optimization algorithm increases EHP heat production to balance the 

microgrid. Wind is curtailed in periods when there is a surplus of EE and there is no option of 

it being indirectly stored (indirectly in HS). 
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Figure 5.Curtailed wind energy and surplus of produced heat energy 

 

Sensitivity analysis of the change in installed wind and solar capacity was performed in order 

to show how non optimal values increase the total amount of curtailed wind and surplus of 

heat energy (Figure 6). While one parameter was being changed the other was set at the 

optimal value.  
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Figure 6.Connection between installed RES capacity and unused energy 

 

The possibility of storing heat energy is one of the elements that provide flexibility in grid 

operation. With large enough storage units µCHP units do not have to follow the demand 

exactly. Furthermore, larger storage capacity can compensate for the non optimally 

dimensioned microgrid elements like installed power of RES. The results of the sensitivity 

analysis depicted on Figure 7. shows dependency of storage size and total unused energy from 

RES. Installing a storage unit of 12 kWht (6 kWht is initial storage size) in every household 

can reduce total unused energy below 0,31% margin for 50% more RES that calculated as the 

optimal values. 
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Figure 7.Connection between HS capacity and unused energy 

 

Similar analysis was conducted for flexible load share. Reference is the simulation with 

optimal values (Figure 8). 
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Figure 8.Connection between flexible demand share and unused energy 

 

Flexible demand has smaller influence on the unused energy compared to heat storage capacity. 

The differences in unused energy for different FL shares are not stressed and curves get to the 

saturation point quickly.  

 

Interesting information is provided by the analysis conducted to determine what impact different 

ratios of heating types (µCHP/EHP) has on the amount of unused energy. µCHP and EHP units 

complement each other in operation as seen in the wasted energy analysis, and together can 

provide a certain amount of flexibility. Results (Figure 9.) show that the least value of unused 

energy is achieved if 60% of households have µCHP and 40% EHP based heating. Boiler 

based household heating type share is set to 0 during this sensitivity analysis meaning each 

household has either EHP or µCHP installed. 
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Figure 9. Impact of CHP share in heating types on unused energy 

 

For a µCHP share of 10% in the off-grid mode the units have to be pushed to operate at their 

maximum point in order to produce enough EE and this results in a lot of wasted heat. As the 

share moves beyond 60% there is not enough EHP electrical demand to balance periods of high 

RES generation and energy is wasted again. 

4.1 On-grid simulation 

The results have shown that the modelled microgrid can operate independently with very little 

unused energy. In case there is a connection with the rest of the distribution system the microgrid 

can exchange electrical energy with the system and its operation is driven by market signals. 

Results of an on-grid operation are shown in Table 5. 

 

Table 5. On-grid and off-grid operation comparison 

Microgrid operation indicator 
Off-grid 

300P   

Off-grid 

1P   

On-grid 

P ** 

Total energy produced [kWh] 4.190.934 4.192.833 4.177.944 

Total EE used [kWhe] 764.926 764.926 764.926 

Total heat used [kWht] 3.559.675 3.559.675 3.413.018 

Wind curtailment [kWh] 1.301 1.333 0,00 

Wasted heat [kWh] 11.689 13.557 0,00 

Imported EE [kWh] 0,00 0,00 266.934 

Exported EE [kWh] 0,00 0,00 547.112 

Unused energy [%]* 0,31 0,36 0,00 

Boiler production [kWh] 453.621 453.697 87.756 

Boiler fuel cost [€] 13.341 13.344 2.581 

TOTAL COST [€] 99.320 99.625 68.477 

* Percentage of total energy used 

**Value of penalty factor P has no effect on on-grid operation mode. 

 

In case when the microgrid operates connected to the rest of the system there is no unused 

energy. Additionally the boilers are forced to produce much less heat compared to off-grid mode 

where they are used to balance the heat production and demand. Consequently amount of fuel 

and the operational cost in boilers is reduced drastically. 
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The operational cost results presented in Table 5 do not take emissions into account. 

Additionally, investment costs could be introduced to get more precise information about the 

profitability of installing different microgrid units (battery storage, heat storage, RES, greater 

flexible load share, plug-in electric vehicles integration etc.). These expansions are a part of 

future work. 

 

5. THE ROLLING UNIT COMMITMENT MODEL INCORPORATING MPC 

If a microgrid operates connected to the rest of the system, it participates in the energy market 

and its operation will be driven by market signals. In order to simulate dynamic behaviour of a 

microgrid the paper observes the microgrid as a single market entity/player. As such it has to 

ensure self balancing and comply with the contracted exchange schedule at the day ahead 

market. To be able to do that it has to consider forecasting errors and be able to reschedule, 

changing the operating points of flexible units as new information on uncertainty parameters 

becomes available. For this reason the extension of previously described deterministic model is 

made. The main goal was to investigate in what amount forecast uncertainties impact the 

microgrid operation and is the microgrid flexible enough to compensate the stochastic nature of 

RES installed. It is expected and desired that microgrid has at least neutral impact on grid 

(respecting proposed export/import schedules). All production and consumption variations 

should be balanced internally with controllable microgrid elements that can provide flexibility. 

5.1 Model Predictive Control (MPC) framework 

The results of a deterministic model have shown that the modelled microgrid can operate 

independently with very little unused energy in deterministic environment. In case there is a 

connection with the rest of the distribution system the microgrid can exchange electrical energy 

and energy waste is avoided. This interaction is even more important in stochastic environment 

where the need for balancing energy grows due to forecast errors. 

 

The MILP unit commitment control algorithm employs MPC to minimize the impact of 

forecast errors. MPC is a control method which is used for discrete control; during one 

simulation step control signals do not change. The MPC concept and developed unit 

commitment algorithms flowchart are depicted on Figure 10. 
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Figure 10. a) MPC rolling horizon concept  b) Flowchart of the MPC optimization model  
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At every time step t  the algorithm estimates the next N  system states and reaches an optimal 

desired state. Control actions are applied and the state stays unchanged until the start of a new 

iteration. At the start of next time step 1t   again N  system states are estimated based on 

new forecasts that include realized input data for preceding iteration. In the developed model 

the horizon is 24 hours because the microgrid participates in is day-ahead market.  1,48S  

represents the current time period of the ongoing day. During one day, 48 half an hour time 

steps are simulated and in each, according to planning horizon, optimal state is specified. The 

solution to the optimization problem determines the power levels throughout the whole 

planning horizon considering the forecast uncertainty. 

5.2 MPC model formulation 

When introducing a stochastic element to the model, a range of error is defined for each 

forecasted data series. The bases for this were predictions from the deterministic model that 

were modified by random number generator of normal distribution with standard deviation 

linearly increasing with the distance from current time step. That way maximum error occurs 

at the end of planning horizon (24 hours ahead). Additionally, for PV production 10% 

possibility to lose 90% of current power was added. Figure 11 shows how the forecast error 

increases towards the end of planning horizon. Figure 12. depicts RES production for a single 

day. 
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Figure 11. Mismatch between realized and forecasted heat and electricity production  
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Figure 12. Forecasted and realized RES production for first planning horizon ( 0S ) 

 

Proposed microgrid operation is modelled in the following way: 

1. Controller collects forecast data ( , , ,d d pv windE H E E ) and estimates optimal microgrid 

operation. The planned import/export schedule is then sent to the distribution system 

operator (DSO); 

2. In the first hour of the day controller acquires updated forecasts (for planning horizon) 

and accordingly deploys rolling unit commitment MPC model and adjusts control 

variables (operational set points of flexible units) to minimize operational cost. The 

mismatch from initially contracted exchange with the system is penalized; 

3. In the next hour (next iteration) optimization is run again with updated forecast and 

planning horizon is shifted forward; 

4. Step 2 and step 3 are repeated until the end of the day. 

 

Additional cost, coming from the forecast error, can be divided in two main components: (i) 

mismatch compensation for not following the announced and contracted import/export 

schedule with the market; (ii) fuel cost increase (e.g. more frequent boiler use). Total cost 

function is updated as the rolling horizon moves to the end of the day, making adjustments 

and taking into account the mismatch compensation for the realized periods and estimating 

costs from current hour till the end of the day (Equation 21). The final operational cost at the 

end of the day is calculated based on actual, adjusted operating points. Therefore objective 

function being minimized is: 
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S marks how many iterations have passed from the start of the day, 0 exp0,impE E  mark 

scheduled import/export of EE. Variable impshort  is defined for negative mismatch in import, 

expshort for negative mismatch in export, implong  for positive mismatch in import and 

explong  for positive mismatch in export. The planned exchange is based on day ahead market 

prices exp,impc c . Differences resulting from microgrids incapability to balance the uncertainty 

and variability of RES are penalized by a percentage M reducing price for both import and 

export. Penalty percentage M  used in the simulations is 25%. For the simplicity of later 

sensitivity analysis the same percentage was used to modify the used prices. 

5.3 Results of the model incorporating MPC 

Total operating cost from the deterministic model is the reference value. MPC model achieves 

only 2% worse result (Figure 13.). Compared to the per-hour management where analysis is 

based solely on the state in the current hour and decisions are made not considering the future 

planning horizon MPC achieves 7% better results. To elaborate; if there was no microgrid 

controller capable of adjusting the operation of flexible units, the microgrid acts as a variable 

source from the system perspective. Incapable of communicating intra-day exchange with the 

system it constantly, throughout the day, creates an imbalance and practically acts as an 

uncontrollable market entity, very similar to RES units. 

 

On secondary axis increase in total costs compared to the reference deterministic model is 

shown. Cumulatively costs with in case no MPC is used are increased 8%.  
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Figure 13. µCHP unit dispatch in the MPC model with and without heat storage 

 

In case no MPC is implemented boiler unit needs to be used much more frequently to balance 

the heat demand (Figure 14.). It is important to note that MPC model also uses high penalty 

factor to inhibit the waste of energy. 
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Figure 14. Boiler unit operation 

 

To investigate if microgrid is capable to totally neutralize the RES forecast error penalty 

factor M was changed. The amounts of imported and exported energy were observed (Figure 

15.) and their difference from planned values. The optimization problem was run 50 times for 

every value of M and averaged import and export values were taken. 
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Figure 15. µCHP unit dispatch in the MPC model with and without heat storage 

 

Already a small penalty factor reduces the amount of not planned exchange energy. 

Furthermore, imported part is smaller and can be reduced to 0 which means microgrid can 

more easily compensate surplus of energy produced by its components. Exported amount 

saturated around 10 kWh value which represents only 0,4% of daily used energy. Even with 

drastically increased penalty factors that totally inhibit the exchange of energy microgrid 

could not achieve perfect error compensation. 

 

6. CONCLUSION AND FUTURE WORK 

A novel concept based on MILP for modelling and optimization of microgrid operation has been 

presented. Deterministic model was developed to investigate what impact different units have on 
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microgrids ability to operate in the off grid mode. It was shown that defining optimal sizes of 

installed wind and PV in a microgrid means very little of energy has to be wasted. Additionally, 

it was shown that capacity of heat storages and ratio of CHP to EHP units will units has bigger 

impact than flexible loads on the amount of wasted heat and curtailed wind. 

 

To potentially compensate inevitable disturbances and forecast errors, model predictive control 

with rolling horizon was developed simulating market driven behaviour of system connected 

microgrid. The MPC strategy achieves better results (lower costs) than simple deterministic day 

ahead unit commitment strategy. It was shown that, with implemented MPC strategy, microgrid 

can almost totally balance the RES uncertainty by intraday adjustment of operational set points 

of flexible units.  

 

Further work will focus on how a microgrid can achieve complete independence from 

distribution grid under stochastic framework. As it can be concluded from the work presented 

including battery storage systems seems to a valuable source of flexibility in off grid 

operation. However it should be taken into account that economics behind installing them 

only for energy arbitrage will not be sufficient to justify them. In term, more detailed model 

capable of addressing frequency flexibility is needed. Adding emissions and emissions cost to 

the model will also be one of the goals with a goal of defining decarbonisation potential of the 

microgrids. 
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