

University of Zagreb Faculty of Electrical Engineering and Computing Department of Electronic Systems and Information Processing

Upgrading Metal Detection to Metallic Target Characterization in Humanitarian Demining

D. Ambruš, D. Vasić and V. Bilas

12th IARP Workshop HUDEM 2014, Zadar, Croatia, April 2014.

Outline

- Background and motivation
- Metallic target characterisation (MTC) concept
 - State-of-the-art
 - Induced dipole model
- Experimental research
- Towards potential deployment in the field
- Conclusions

Background and motivation

- Conventional metal detectors (MDs)
 prime tools for close-in detection in humanitarian demining (HD)
- Recent developments of MD technology focus on:
 - Increasing sensitivity (i.e. probability of detection)
 - Enhancing performance over non-cooperative soils
 - Improving other technical features (device autonomy, etc.)
- The problem:
 - Inability to discriminate between mine and metallic clutter results in extremely high false alarm rates (FAR)
- The challenge:
 - Reduction of FAR by upgrading metal detection to metallic target characterisation using advanced electromagnetic induction (EMI) methods ?

Metallic target characterisation (MTC) concept

- MTC implies getting information on target's:
 - Average size
 - Shape (principal axes aspect ratio)
 - Spatial orientation
 - Relative position in 3D
 - Material properties (electrical conductivity / magnetic permeability).
- Extracted information could provide a reliable basis for target classification and identification
- Implementation decision support system for detection, confirmation and excavation phase
- MTC using a single (EMI) sensing modality only, as opposed to existing multi-sensor approaches

State-of-the-art in MTC

- Methods relying on analytical EMI-based models are field-proven in security, geophysical surveys and non-destructive testing (NDT) applications.
- Models featuring magnetic dipole approximation:
 - Induced dipole model (suitable for "small" targets)
 - Models featuring discrete number of spatially distributed magnetic dipoles ("large" targets, UXOs..)
- Computationally efficient parameter estimation, capable of operating in real-time
- Still no commercial devices for HD applications!

Induced dipole model

- Model parameters:
 - Magnetic polarizability tensor (MPT)
 - Target position

$$\vec{m}_{\text{target}} = \vec{M}\vec{H}_{\text{prim}}(\vec{r}_{\text{TX}} - \vec{r}_{\text{target}})$$

$$\vec{H}_{sec}(\vec{r}, \vec{r}_{TX}, \vec{r}_{RX}) = \frac{1}{4\pi |\vec{r}|^3} \left(\frac{3\vec{r}(\vec{r} \cdot \vec{m}_{target})}{|\vec{r}|^2} - \vec{m}_{target} \right)$$
$$\vec{u}_{RX} = f_{FWD}(\vec{M}, \vec{r})$$

Magnetic moment of the target, **M** is MPT (symmetric 3x3 matrix)

Magnetic field of a target at the receiver location

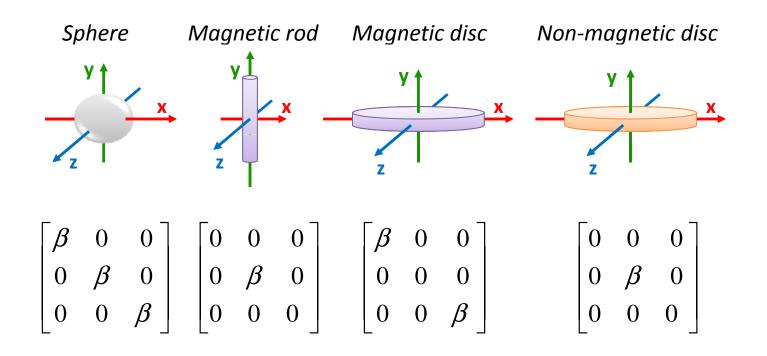
Forward function

- Forward function:
 - Linear with respect to MPT

Non-linear with respect to target position

Estimating target geometry /material type

 Model parameters (*M*, *r*) obtained through nonlinear optimization algorithm based on the least-squares criterion,

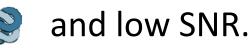

$$\arg\min\left(\left\|\vec{u}_{\text{meas}} - f_{\text{FWD}}\left(\vec{M}, \vec{r}\right)\right\|^2\right)$$

Extracting target information from MPT:

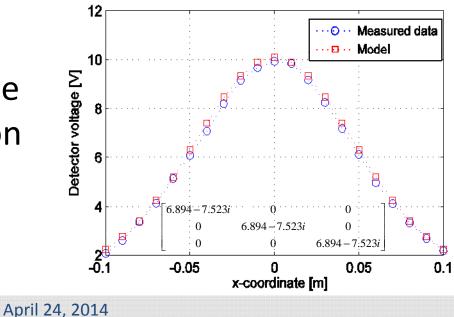
$$\vec{M} = \vec{R}^{T}(\theta, \phi)\vec{\beta}(\omega)\vec{R}(\theta, \phi) \qquad \vec{\beta} = \begin{bmatrix} \beta_{x}(\omega) & 0 & 0\\ 0 & \beta_{y}(\omega) & 0\\ 0 & 0 & \beta_{z}(\omega) \end{bmatrix}$$

- Target orientation from rotation matrix R
- Target shape and material properties from
 frequency dependent eigenvalues of *M*

Extracting target information from MPT



Basic principles of metallic target characterisation via magnetic polarizability tensor


Experimental research (AIG, UniZG-FER)

- Development of a nextgeneration EMI detector for landmine detection in humanitarian demining
- Experiments on laboratory samples of test targets (ITOPs, CWA-14747).
- Inversion procedures for the estimation of target position and MPT optimized with respect to execution speed

Towards deployment in the field

- Tracking the relative position and spatial orientation of the detector's sensing head during scanning motion
 - Handheld device tracking system with sub-centimetre accuracy and high update rate needed
 - Robotic application defined by manipulator kinematics
- Preferred mode of operation
 - Handheld device two-step procedure (standard MD + MTC mode)
 - Robotic application depends on objectives and requirements of a particular robotic mission

Conclusions

- In order to overcome the well-known limitations of existing metal detector technology in terms of FAR, a new mine detection concept relying on model-based metallic target characterisation (MTC) is proposed.
- MTC concept already verified in other applications (such as security and UXO detection)
- The concept could lead to a new enabling technology for developing next-generation metal detection devices – either in the form of manual mine detectors or for integration with robotic systems.

Incoming events

Deadlines: 24 October 2014

Link: http://sensorapps.org/sites/default/files/uploads/sas-2015_cfp_v5.pdf

Advanced Instrumentation Group

Acknowledgement

THANK YOU FOR YOUR ATTENTION!

Advanced Instrumentation Group

13