

University of Zagreb

Faculty of Electrical Engineering and Computing Department of Electronic Systems and Information Processing

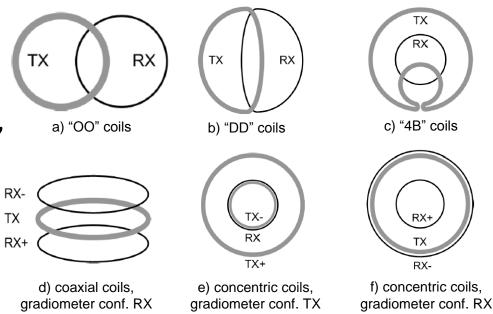
Active induction balance method for metal detector sensing head utilizing transmitterbucking and dual current source

D. Ambrus, D. Vasic and V. Bilas

Sensors & their Applications XVII

Outline

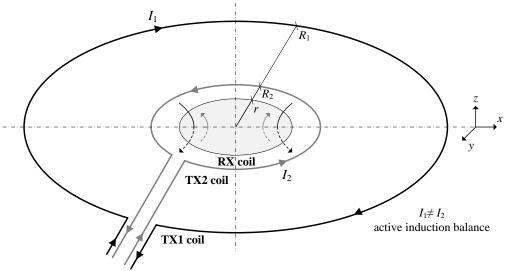
- Introduction
- Induction balance problem
- Sensing head design and modeling
- Active induction balance technique
- Experiments and results
- Conclusions


Background and motivation

- Electromagnetic induction (EMI) sensors in humanitarian demining
 still an area of active research!
- Time-domain (TD) EMI sensors:
 - Inherently balanced, but excitation spectrum limited!
- Frequency-domain (FD) EMI sensors:
 - Higher sensitivity and improved SNR,
 - Induction balance (IB) problem (i.e. direct inductive coupling between TX and RX coil) needs to be solved.

Induction balance problem

- Suppression of primary (excitation) field achieved by sensing head geometry:
 - Physical separation of coils,
 - Gradiometer configuration of RX coils,
 - Overlapping coils,
 - Orthogonal coils,
 - Transmitter-bucking,

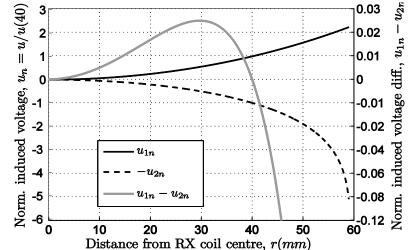


September 17, 2013

Sensing head - design objectives

- Ultimate objective: handheld FD EMI landmine detector featuring model-based metal characterization and soil compensation.
- Initial design requirements:
 - High sensitivity and dynamic range,
 - Simple and compact geometry,
 - High spatial resolution,
 - Pinpointing accuracy,
 - Good invertibility of measured data.

➔ transmitter-bucking configuration


Sensing head model

 Vertical component of magnetic field B_z as a function of radial distance r from the coil centre:

$$B_Z(r) = \frac{\mu_0 IN}{2R} \left[1 + \sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 (2n+1) \left(\frac{r}{R}\right)^{2n} \right]$$

for $r \leq R$, inside loop (circular coil approx.)

For a detector coil of radius r
IB is obtained if:

Normalized voltages induced in RX coil in response to TX1 and TX2 coils.

$$\int_{0}^{r} B_{Z}^{1}(r) 2\pi r dr = \int_{0}^{r} B_{Z}^{2}(r) 2\pi r dr$$
$$\frac{N_{1}}{R_{1}} \sum_{n=0}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^{2} \frac{(2n+1)}{(2n+2)} \left(\frac{r}{R_{1}} \right)^{2n} = \frac{N_{2}}{R_{2}} \sum_{n=0}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^{2} \frac{(2n+1)}{(2n+2)} \left(\frac{r}{R_{2}} \right)^{2n}$$

Induction balance sensitivity analysis

• IB sensitivity to small perturbations of geometrical properties of coils (R_1, R_2, r) ?

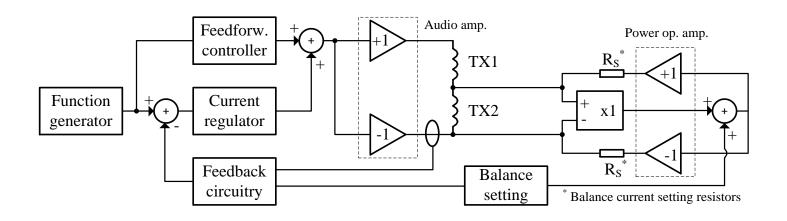
$$S_x^u = \frac{\Delta u}{u_{IB}} \left(\frac{\Delta x}{x}\right)^{-1} = \left(\frac{\Delta u_1}{u_1} - \frac{\Delta u_2}{u_2}\right) \left(\frac{\Delta x}{x}\right)^{-1} = S_x^{u_1} - S_x^{u_2}$$

• For a given geometry: $S_{R_1}^u$ = -1.057, $S_{R_2}^u$ = -1.555, S_r^u = 0.498

TX1 coil radius		TX2 coil radius		RX coil radius		Induced voltage (excitation current, I=1A)		
							f=1kHz	f=100kHz
$\Delta R_1/R_1$	ΔR_1	$\Delta R_2/R_2$	ΔR_2	$\Delta r/r$	Δr	$\Delta u/u_{IB}$	Δu ,	Δu ,
(%)	(mm)	(%)	(mm)	(%)	(mm)	(%)	(mV)	(V)
1	1.5	0	0.0	0	0.0	-1.057	3.1	0.310
2	3.0	0	0.0	0	0.0	-2.114	6.2	0.621
3	4.5	0	0.0	0	0.0	-3.171	9.3	0.931
0	0.0	1	0.6	0	0.0	-1.555	4.6	0.457
0	0.0	2	1.2	0	0.0	-3.110	9.1	0.913
0	0.0	3	1.8	0	0.0	-7.775	22.8	2.284
0	0.0	0	0.0	1	0.4	0.498	1.5	0.146
0	0.0	0	0.0	2	0.8	0.996	2.9	0.293
0	0.0	0	0.0	5	2.0	2.490	7.3	0.731

Active induction balance (AIB)

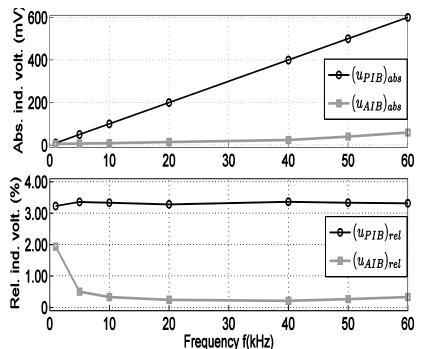
Excitation current in each transmitter coil controlled separately:


$$\frac{I_1 N_1}{R_1} \sum_{n=0}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 \frac{(2n+1)}{(2n+2)} \left(\frac{r}{R_1} \right)^{2n} = \frac{I_2 N_2}{R_2} \sum_{n=0}^{\infty} \left[\frac{(2n-1)!!}{(2n)!!} \right]^2 \frac{(2n+1)}{(2n+2)} \left(\frac{r}{R_2} \right)^{2n}$$

- Motivation:
 - Compensation of small imperfections of sensing head geometry and the effects of finite size coils,
 - Sensing head easier to produce,
 - Potential for more efficient soil compensation (lower loss of detector sensitivity / dynamic range).

AIB implementation

- Transmitter coil driven by current source → transmitted field unaffected by changes in coil impedance, soil properties, lift-off and orientation of the sensing head.
- Dual current source scheme:
 - Main (excitation) current source drives both TX coils,
 - Balancing current source additionally drives only inner TX coil.



Experiments and results

- Dual current source and sensing head in transmitterbucking configuration implemented as laboratory prototypes.
- Induced voltage imbalance measured for passive IB and AIB at different frequencies (in absolute and relative terms).
- Residual imbalances from passive IB can be effectively compensated by AIB.

Conclusions

- For a design of novel, frequency-domain EMI landmine detector, we propose a sensing head configuration based on the transmitter-bucking approach.
- Overall, IB sensitivities to small perturbations of sensing head geometrical properties are rather low.
- Total sensor imbalances in absolute terms can become large, resulting in significant loss of sensitivity / dynamic range.
- Prototype sensor with AIB and dual current source overcomes the limitations of passive IB.
- Future work: further characterisation of the method, automatic compensation of soil-related imbalances.

THANK YOU FOR YOUR ATTENTION!

Advanced Instrumentation Group

September 17, 2013