

A robust separable image denoising based on relative intersection of confidence intervals rule

Damir Seršić and Ana Sović (ana.sovic@fer.hr) University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

Overview

- Problem
- Intersection of confidence intervals rule
- Relative intersection of confidence intervals rule
- Separable image denoising
- Examples
- Conclusion

Problem

Input signal (image) corrupted with noise

y(n) = x(n) + w(n)

Goal: find a good estimate x
(n) of input signal that accurately restores smooth parts and preserves its edges and discontinuities

Moving average

Zero-order estimate of the input signal

$$\bar{x}_{h_k}(n) = \frac{1}{h_k} \sum_{i = \langle h_k \rangle} y(i)$$

• Large windows h_k

- good estimates of low frequency components
- unwanted smoothing of jumps and edges
- Optimal window length h^{*} at some sample n → the smoothest zero-order estimate that does not span across the edges

Intersection of confidence intervals

Growing set of estimators of window lengths

$$h_1 < h_2 < \dots < h_k < \dots < h_K$$

Increase h_k until we reach the optimal window length h^{*} for each observed sample n

Intersection of confidence intervals

Confidence interval

 $D_k(n) = [L_k, U_k], \qquad 1 \le k \le K$

Lower and upper limits

The smallest upper and the largest lower confidence interval limits

$$\overline{L}_k(n) = \max_{\substack{i=1,\dots,k}} L_i(n)$$
$$\underline{U}_k(n) = \min_{\substack{i=1,\dots,k}} U_i(n)$$

ICI rule

• Optimal window length $h^+ = h_k$ is the largest window length for which the condition

 $\overline{L}_k(n) \le \underline{U}_k(n)$

is satisfied

Close to ideal h^{*}

Repeat for each sample of y(n)

Relative intersection of confidence intervals (RICI)

• chosen window length is the largest $h^+ = h_k$ for which is still satisfied

$$\frac{U_k(n) - \overline{L}_k(n)}{U_k(n) - L_k(n)} \ge r_c$$

Estimate of the input signal

 $\bar{x}_{h^+}(n) = \text{mean}\left\{y(n), \dots, y(n+h^+(n)-2), y(n+h^+(n)-1)\right\}$

In asymptotical sense \rightarrow mean can be replaced by median $\bar{x}_{h^+}(n) = \text{median} \{y(n), \dots, y(n+h^+(n)-2), y(n+h^+(n)-1)\}$

Why median

- results are more robust (even if the window lengths were not perfectly determined)
- more accurate results for almost any noise distribution
- significantly less sensitive to choice of parameters
- less sensitive to outliers

Image denoising algorithm – 1st step

- I. For each pixel y(n,m) observe its ROW
- Find the widest window length on the left side and on the right side from y(n,m) using ICI or RICI rule
- 3. Join all pixels on the intervals use median intermediate image $\bar{x}_r(n,m)$

- 4. For each pixel $\bar{x}_r(n,m)$ observe its COLUMN
- 5. Find the widest window length on the upper side and on the down side from $\bar{x}_r(n,m)$ using ICI or RICI rule
- 6. Join all pixels on the intervals use median intermediate image $\bar{x}_{rc}(n,m)$

Image denoising algorithm – 2nd step

- I. For each pixel y(n,m) observe its COLUMN
- Find the widest window length on the upper side and on the down side from y(n,m) using ICI or RICI rule
- 3. Join all pixels on the intervals use median intermediate image $\bar{x}_c(n,m)$

- 4. For each pixel $\bar{x}_c(n,m)$ observe its ROW
- 5. Find the widest window length on the left side and on the right side from $\bar{x}_c(n,m)$ using ICI or RICI rule
- 6. Join all pixels on the intervals use median intermediate image $\bar{x}_{cr}(n,m)$

Image denoising algorithm – 3rd step

- Combine estimated images $\bar{x}_{rc}(n,m)$ and $\bar{x}_{cr}(n,m)$ to the final denoised result
 - MRICI method with fixed weights

$$\bar{x}(n,m) = \frac{\bar{x}_{rc}(n,m) + \bar{x}_{cr}(n,m)}{2}$$

MRICI method with the variable weights

$$\begin{split} \omega_{rc}(n,m) &= h_{rcL}^{+}(n,m) + h_{rcR}^{+}(n,m) + h_{rcU}^{+}(n,m) + h_{rcD}^{+}(n,m) \\ \omega_{cr}(n,m) &= h_{crL}^{+}(n,m) + h_{crR}^{+}(n,m) + h_{crU}^{+}(n,m) + h_{crD}^{+}(n,m) \\ \bar{x}(n,m) &= \frac{\omega_{rc}(n,m) \cdot \bar{x}_{rc}(n,m) + \omega_{cr}(n,m) \cdot \bar{x}_{cr}(n,m)}{\omega_{rc}(n,m) + \omega_{cr}(n,m)} \end{split}$$

ICI fixed

RICI fixed

Gaussian noise

ICI variable

RICI variable

Anisotropic LPA-ICI

MICI fixed

MRICI fixed

SWT Haar

MICI variable

MRICI variable

Laplacian noise Anisotropic LPA-ICI SWT Haar RICI fixed MRICI fixed Image: Comparison of the state of

Binomial noise

Anisotropic LPA-ICI

SWT Haar

RICI fixed

MRICI fixed

PSNR for 30 realizations of the test image

	Gaussian noise, dB	Laplacian noise, dB	Binomial noise, dB
noisy-image	28.1372	28.1263	27.7333
ICI, fixed weight	19.5834	19.5659	19.7396
ICI, variable weight	19.5706	19.5530	19.7269
MICI, fixed weight	28.1511	28.1373	27.7886
MICI, variable weight	28.1523	28.1405	27.7762
RICI , fixed weight	40.8962	38.9303	36.3624
RICI, variable weight	40.7430	39.0041	36.2947
MRICI, fixed weight	42.1992	40.1020	42.6739
MRICI, variable weight	41.8532	40.1671	42.3026
anisotropic LPA-ICI	39.9478	37.3952	35.5632
Haar wavelet	40.4542	39.7961	35.9131

Image + noise (different noise deviations)

Conclusion

- novel method for image denoising based on the relative intersection of confidence interval rule
- separable three steps method
- median based estimators
- smooth parts are accurately restored
- edges and discontinuities are reserved

Thank you for your attention!

