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Abstract—Many microscopy images, or 3D depth maps can be 
represented using piecewise constant models. They usually 
contain noise due to sensor imperfectness. In this paper, an 
improved separable denoising method based on the relative 
intersection of confidence intervals rule is proposed. The method 
uses median averaging and is robust to outliers and different 
noise distributions. It over-performs competitive methods in the 
sense of edge preservation.  
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I.  INTRODUCTION  
 Real-world images usually contain noise (especially in 

dark areas) due to imperfectness or worth of sensors. 
Sometimes it is very important to reduce noise, e.g. for 
astronomy [1], microscopy [2], seismology [3], in medicine, 
where post-processing methods are more acceptable than 
higher radiation doses [4].  

Wiener filtering is a traditional approach to denoising [5]. 
Wavelet transform shows good performance, especially for 
non-stationary images with a piecewise polynomial structure of 
signals and a non-predictable structure of noise [6][7][8]. If the 
image has piece-wise constant parts, better approaches are the 
shape adaptive DCT [9], block-matching and 3D filtering 
algorithm [10] or intersection of confidence intervals (ICI) rule 
accompanied with local polynomial approximation [11].  

In this paper, we use a robust median based technique for 
enhancement of the known ICI denoising method. 

II. INTERSECTION OF CONFIDENCE INTERVALS 

Let input signal ݔሺ݊ሻ be corrupted by additive zero mean 
Gaussian noise ݓሺ݊ሻ. Noise samples are assumed to be 
independent and identically distributed random variables 
ࣨሺ0, ௪ߪ

ଶ ሻ: 

ሺ݊ሻݕ ൌ ሺ݊ሻݔ ൅  ሺ݊ሻ. (1)ݓ

Our goal is to find a good estimate ݔҧሺ݊ሻ of the input signal 
that accurately restores smooth regions and preserves edges in 
the same time. Assumption is that the input signal is piecewise 
constant, so we use zero order estimation on adaptive window 
length. To obtain the length, we use intersection of confidence 

intervals (ICI) rule, which chooses filters with short support 
near edges and long support otherwise.  

In one dimensional application of the ICI rule, we increase 
window length ݄௞ until we reach the optimal size ݄כ at each 
observed sample n. Confidence interval is defined for each 
sample n and for every window length ݄௞: 

௞ሺ݊ሻܦ ൌ ҧ௛ೖݔൣ
ሺ݊ሻ െ Γ ڄ ௛ೖߪ

ሺ݊ሻ, ҧ௛ೖݔ
ሺ݊ሻ ൅ Γ ڄ ௛ೖߪ

ሺ݊ሻ൧, (2) 

where Γ is a threshold parameter that defines the confidence 
interval width and ߪ௛ೖ

ሺ݊ሻ ൌ ௪ߪ ඥ݄௞⁄  is the deviation of the 
signal sample estimate [12]. The smallest upper and the largest 
lower confidence interval limits on observed interval are:  

௞ሺ݊ሻܮ ൌ max
௜ୀଵ,…,௞

ቀݔҧ௛೔
ሺ݊ሻ െ Γ ڄ ௛೔ߪ

ሺ݊ሻቁ, 

ܷ௞ሺ݊ሻ ൌ min
௜ୀଵ,…,௞

ቀݔҧ௛೔
ሺ݊ሻ െ Γ ڄ ௛೔ߪ

ሺ݊ሻቁ. 
(3) 

Chosen window length ݄ା is the largest window length for 
which the ICI condition  

௞ሺ݊ሻܮ ൑ ܷ௞ሺ݊ሻ (4) 

is satisfied. The same rule must be repeated for every sample of 
  .ሺ݊ሻݕ

Typically, we get a slightly too large window lengths using 
the ICI rule. A good improvement is a relative intersection of 
confidence intervals rule (RICI) [13][14]. The method is based 
on ratio of cumulative confidence interval lengths and the size 
of the current confidence interval: 

ܴ௞ ൌ
ܷ௞ሺ݊ሻ െ ௞ሺ݊ሻܮ

2Γߪ௛ೖ

. (5) 

  



The chosen window length is the smallest ݄ା ൌ ݄௞ for 
which is satisfied: 

ܴ௞ ൏  ௖, (6)ݎ

where ݎ௖ is a preset threshold parameter. The RICI criterion is 
usually applied as an additional criterion to the ICI rule.  

Using all included samples, with respect to window length 
݄ା, average value on the interval is calculated as: 

ҧ௛శሺ݊ሻݔ                  ൌ mean ሼݕሺ݊ሻ, …, 
ሺ݊ݕ                                         ൅ ݄ାሺ݊ሻ െ 2ሻ, 
ሺ݊ݕ                                         ൅ ݄ାሺ݊ሻ െ 1ሻሽ. 

(7) 

In asymptotical sense ሺ݄ା ՜ ∞ሻ and if the noise 
distribution is arbitrary, but symmetrical, mean can be replaced 
by median: 

ҧ௛శሺ݊ሻݔ             ൌ median ሼݕሺ݊ሻ, …, 
ሺ݊ݕ                                         ൅ ݄ାሺ݊ሻ െ 2ሻ, 
ሺ݊ݕ                                         ൅ ݄ାሺ݊ሻ െ 1ሻሽ. 

(8) 

Such a replacement is less sensitive to choice of Γ and ݎ௖, 
and gives more accurate results for almost any noise 
distribution. Furthermore, outliers in the signal will almost 
have no influence on the estimation, thus the estimation is more 
robust. The edges of the signal will be perfectly restored [15]. 
We introduce the abbreviations MICI (median intersection on 
confidence interval) and MRICI (median relative ICI). 

III. IMAGE DENOISING ALGORITHM 

Zero mean Gaussian noise ݓሺ݊, ݉ሻ, ࣨሺ0, ௪ߪ
ଶ ሻ, is added to 

the input image ݔሺ݊, ݉ሻ: 

,ሺ݊ݕ ݉ሻ ൌ ,ሺ݊ݔ ݉ሻ ൅ ,ሺ݊ݓ ݉ሻ. (9) 

A good method for image denoising is described in [16]. 
We propose using the same algorithm, but with replacing mean 
averaging with median averaging to get more robust results. 
The algorithm consists of three stages:  

1. For each pixel ݕሺ݊, ݉ሻ observe its row. Find the widest 
window length on the left side ݄௥௖௅

ା ሺ݊, ݉ሻ and on the right 
side ݄௥௖ோ

ା ሺ݊, ݉ሻ from the observed pixel using the ICI or 
the RICI rule. First letter in an index, ݎ, denotes that the 
rows are observed first, the second letter, ܿ, means that 
the columns are observed next, and the third letter 
symbolizes: ܮ left from the pixel and ܴ right from the 
pixel. Join all pixels on the intervals and use median: 

,ҧ௥ሺ݊ݔ ݉ሻ ൌ median ሼݕሺ݊, ݉ െ ݄௥௖௅
ା ሺ݊, ݉ሻ ൅ 1ሻ,

,ሺ݊ݕ                              ݉ െ ݄௥௖௅
ା ሺ݊, ݉ሻ ൅ 2ሻ, …, 

,ሺ݊ݕ                              ݉ሻ, …, 
,ሺ݊ݕ                              ݉ ൅ ݄௥௖ோ

ା ሺ݊, ݉ሻ െ 2ሻ, 
,ሺ݊ݕ                             ݉ ൅ ݄௥௖ோ

ା ሺ݊, ݉ሻ െ 1ሻሽ.

(10) 

 
Now, observe each column of the ݔҧ௥ሺ݊, ݉ሻ. Find the 
widest window length on upper side ݄௥௖௎

ା ሺ݊, ݉ሻ and 
down side ݄௥௖஽

ା ሺ݊, ݉ሻ from the observed pixel. The third 
letter symbolizes: ܷ up from the pixel and ܦ down from 
the pixel. Join the intervals and use median: 
 

,ҧ௥௖ሺ݊ݔ ݉ሻ ൌ median ሼݔҧ௥ሺ݊ െ ݄௥௖௎
ା ሺ݊, ݉ሻ ൅ 1, ݉ሻ,

ҧ௥ሺ݊ݔ                               െ ݄௥௖௎
ା ሺ݊, ݉ሻ ൅ 2, ݉ሻ, …,

,ҧ௥ሺ݊ݔ  ݉ሻ, …, 
ҧ௥ሺ݊ݔ                           ൅ ݄௥௖஽

ା ሺ݊, ݉ሻ െ 2, ݉ሻ,
ҧ௥ሺ݊ݔ                            ൅ ݄௥௖஽

ା ሺ݊, ݉ሻ െ 1, ݉ሻሽ. 

(11) 

2. Now, do the reverse procedure. At the beginning, observe 
the column for each pixel ݕሺ݊, ݉ሻ and find the widest 
window length up side ݄௖௥௎

ା ሺ݊, ݉ሻ and down side 
݄௖௥஽

ା ሺ݊, ݉ሻ. First letter in index, ܿ, denotes that the 
columns are observed first, the second letter, ݎ, means 
that the rows are observed next. Calculate estimation 
,ҧ௖ሺ݊ݔ ݉ሻ from pixels in the observed interval: 
 
,ҧ௖ሺ݊ݔ ݉ሻ ൌ median ሼݕሺ݊ െ ݄௖௥௎

ା ሺ݊, ݉ሻ ൅ 1, ݉ሻ,
ሺ݊ݕ                               െ ݄௖௥௎

ା ሺ݊, ݉ሻ ൅ 2, ݉ሻ, …, 
,ሺ݊ݕ                               ݉ሻ, …, 
ሺ݊ݕ                               ൅ ݄௖௥஽

ା ሺ݊, ݉ሻ െ 2, ݉ሻ, 
ሺ݊ݕ                              ൅ ݄௖௥஽

ା ሺ݊, ݉ሻ െ 1, ݉ሻሽ.

(12) 

 
Then, observe each row of the ݔҧ௖ሺ݊, ݉ሻ. Find the widest 
window length on the left side ݄௖௥௅

ା ሺ݊, ݉ሻ and on the right 
side ݄௖௥ோ

ା ሺ݊, ݉ሻ. Calculate estimation ݔҧ௖௥ሺ݊, ݉ሻ using 
median: 
 

,ҧ௖௥ሺ݊ݔ ݉ሻ ൌ median ሼݔҧ௖ሺ݊, ݉ െ ݄௖௥௅
ା ሺ݊, ݉ሻ ൅ 1ሻ,

,ҧ௖ሺ݊ݔ                              ݉ െ ݄௖௥௅
ା ሺ݊, ݉ሻ ൅ 2ሻ, …, 

,ҧ௖ሺ݊ݔ                              ݉ሻ, …, 
,ҧ௖ሺ݊ݔ                              ݉ ൅ ݄௖௥ோ

ା ሺ݊, ݉ሻ െ 2ሻ, 
,ҧ௖ሺ݊ݔ                             ݉ ൅ ݄௖௥ோ

ା ሺ݊, ݉ሻ െ 1ሻሽ.

(13) 

 
3. Combine estimated images ݔҧ௥௖ሺ݊, ݉ሻ and ݔҧ௖௥ሺ݊, ݉ሻ to 

the final denoised result. The simplest way is averaging 
the two estimates: 
 

,ҧሺ݊ݔ ݉ሻ ൌ ൫ݔҧ௥௖ሺ݊, ݉ሻ ൅ ,ҧ௖௥ሺ݊ݔ ݉ሻ൯/2. (14) 
 
We denote it as MRICI method with fixed weights. More 
accurate way is to take weighting factors that depend on 
reliability of each estimate (MRICI method with the 
variable weights) [12][16]: 

 



߱௥௖ሺ݊, ݉ሻ ൌ ݄௥௖௅
ା ሺ݊, ݉ሻ ൅ ݄௥௖ோ

ା ሺ݊, ݉ሻ
൅ ݄௥௖௎

ା ሺ݊, ݉ሻ ൅ ݄௥௖஽
ା ሺ݊, ݉ሻ, 

 
߱௖௥ሺ݊, ݉ሻ ൌ ݄௖௥௅

ା ሺ݊, ݉ሻ ൅ ݄௖௥ோ
ା ሺ݊, ݉ሻ

൅ ݄௖௥௎
ା ሺ݊, ݉ሻ ൅ ݄௖௥஽

ା ሺ݊, ݉ሻ, 
 

,ҧሺ݊ݔ ݉ሻ

ൌ
߱௥௖ሺ݊, ݉ሻ ڄ ,ҧ௥௖ሺ݊ݔ ݉ሻ ൅ ߱௖௥ሺ݊, ݉ሻ ڄ ,ҧ௖௥ሺ݊ݔ ݉ሻ

߱௥௖ሺ݊, ݉ሻ ൅ ߱௖௥ሺ݊, ݉ሻ . 

(15) 

Proposed method characterizes edge preservation, which is 
an important feature in the image denoising. Final image is less 
sensitive to statistical deviations (e.g. outliers) in the image and 
to sudden changes in the neighboring pixel values. Resulting 
image has less oscillation near edges. Therefore, it is sharper 
than when achieved using comparable methods.  

Simulation results of the proposed method are presented in 
the following chapter. 

IV. SIMULATION RESULTS 
The example is 64x64 pixels test image. It contains gray 

scale blocks (Fig. 1(a)) and additive zero mean Gaussian noise 
௪ߪ ൌ 10 (Fig. 1(b)). We performed separable image denoising 
method based on the intersection of confidence intervals rule 
using mean and a threshold parameter Γ ൌ 4.4. Final estimated 
image is calculated using fixed and variable weights (Fig. 1(e) 
and (f), respectively). Artifacts of separable approach are 
clearly visible; rows and columns are outstretched. If we 
replace mean by median inside the ICI rule, we get Fig. 1(g) 
and (h). The rows and columns are less outstretched, but the 
edges between different gray shades are not perfectly restored. 
Fig. 1(i) and (j) shows the estimate calculated using fixed and 
variable weights and mean based RICI method Γ ൌ 4.4 and 
௖ݎ ൌ 0.85. The best results are achieved when mean is replaced 
by median (Fig. 1(k) and (l)). Edges are almost completely 
preserved and true pixel values are accurately restored.  

We compare our results with the anisotropic LPA-ICI, 
Γ ൌ 1.05 [17] and non-decimated Haar wavelets (hard 
threshold 3.5ߪ௪, 4 decomposition levels) as shown in Fig. 1(c) 
and (d). In both cases, visual results are worse than in any of 
the proposed methods. Background is not smooth, and the 
edges are not sharp. 

In Fig. 2(a),(f) the same test image is presented, but with 
different noise distributions: Laplacian and binomial. Both 
noisy images are denoised using the anisotropic LPA-ICI 
method ((b), (g)), undecimated Haar wavelet transform 
((c),(h)), mean and median RICI with the fixed weights ((d)-

(e), (i)-(j)). In the binomial noise case, the MRICI gives an 
almost perfectly reconstructed image, while the RICI solution 
is biased – it gives wrong gray shade level. 

Fig. 3 shows PSNR-s for mentioned methods (LPA-ICI, 
undecimated Haar wavelet transform, separable mean RICI and 
proposed separable median RICI (MRICI) with fixed weights) 
for additive Gaussian, Laplacian and binomial noise for noise 
deviation range of ߪ௪ א ሾ0,100ሿ. Separable RICI method 
results in better PSNR-s for smaller ߪ௪. Undecimated Haar 
wavelet and anisotropic LPA-ICI methods show the best results 
for high levels of the noise. The MRICI outperforms the mean 
RICI for the lower level of the noise, especially for the additive 
binomial noise. 

In TABLE I.  peak signal to noise ratios are compared for 
the same test image and for three noise distributions: Gaussian, 
Laplacian and binomial, 30 realizations of each. All noise 
distributions are zero mean and have ߪ௪ ൌ 10. In all cases, the 
new proposed methods show the best PSNR results. 

V. CONCLUSION 
In this paper we have proposed two novel methods for 

image denoising which are based on the relative intersection of 
confidence interval rule and a robust median estimator. They 
give larger PSNR-s than competitive methods for different 
noise distributions. They offer better edge preservation and are 
less sensitive to outliers in the noisy image.  

ACKNOWLEDGMENT 
This work has been supported by the European Community 

Seventh Framework Programme under grant No. 285939 
(ACROSS). 

 

TABLE I.  PSNR FOR 30 REALIZATIONS OF THE TEST IMAGE AND THREE 
DIFFERENT NOISE DISTRIBUTIONS: GAUSSIAN, LAPLACIAN AND BINOMIAL. 

 Gaussian 
noise, dB 

Laplacian 
noise, dB

Binomial 
noise, dB

noisy-image 28.1372 28.1263 27.7333
ICI, fixed weight 19.5834 19.5659 19.7396

ICI, variable weight 19.5706 19.5530 19.7269
MICI, fixed weight 28.1511 28.1373 27.7886

MICI, variable weight 28.1523 28.1405 27.7762
RICI, fixed weight 40.8962 38.9303 36.3624

RICI, variable weight 40.7430 39.0041 36.2947
MRICI, fixed weight 42.1992 40.1020 42.6739

MRICI, variable weight 41.8532 40.1671 42.3026
anisotropic LPA-ICI 39.9478 37.3952 35.5632

Haar wavelet 40.4542 39.7961 35.9131
 



 

 
Fig. 1. (a) Test noise free image. (b) Noisy image with zero mean Gaussian noise ߪ௪ ൌ 10. (c) Anisotropic LPA-ICI denoised image with Γ ൌ 1.05. (d) 
Undecimated Haar wavelet denoised image with hard threshold 3.5ߪ௪ and 4 decomposition levels. (e) Mean ICI ሺΓ ൌ 4.4ሻ with fixed weights denoised image. (f) 
Mean ICI ሺΓ ൌ 4.4ሻ with variable weights denoised image. (g) Median ICI ሺΓ ൌ 4.4ሻ with fixed weights denoised image. (h) Median ICI ሺΓ ൌ 4.4ሻ with variable 
weights denoised image. (i) Mean RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with fixed weights denoised image. (j) Mean RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with variable weights 
denoised image. (k) Median RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with fixed weights denoised image. (l) Median RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with variable weights denoised 
image. 

 

 
Fig. 2. (a) Image with added Laplacian noise ߪ௪ ൌ 10. (b) Anisotropic LPA-ICI denoised image with Γ ൌ 1.05. (c) Undecimated Haar wavelet denoised image 
with hard threshold 3.5ߪ௪ and 4 decomposition levels. (d) Mean RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with fixed weights denoised image. (e) Median RICI ሺΓ ൌ 4.4, ௖ݎ ൌ
0.85ሻ with fixed weights denoised image. (f) Image with added binomial noise ߪ௪ ൌ 10. (g) Anisotropic LPA-ICI denoised image with Γ ൌ 1.05. (h) 
Undecimated Haar wavelet denoised image with hard threshold 3.5ߪ௪ and 4 decomposition levels. (i) Mean RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with fixed weights 
denoised image. (j) Median RICI ሺΓ ൌ 4.4, ௖ݎ ൌ 0.85ሻ with fixed weights denoised image. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)



 

Fig. 3. PSNR as a function of ߪ௪ for different denoising methods and different noise distributions: (a) Gaussian noise, (b) Laplacian noise and (c) binomial noise. 
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