

Smart Grids Development Program in Slovenia

Workshop for Preparation of Croatian Technology Platform for Cooperative Renewable Energy Systems and Smart Grids

2 July, 2013, Zagreb, Croatia

Prof. dr. Igor Papič

TP Smart Grids Slovenia <u>www.smartgrids.si</u> University of Ljubljana, Faculty of Electrical Engineering <u>igor.papic@fe.uni-lj.si</u>

- Active network concept Smart Grids
- Demo projects' key facts
- National Smart Grids program
 - goals
 - long term effects
 - investment timeline
 - financing
- National operational plan
 - main focus
 - project overview
 - locations
- Concluding remarks

Active network concept – Smart Grids

- Smart Grids concept is based on solid foundations of conventional power systems
- Smart Grids are more than just interconnection of DER
- Smart Grids enable efficient use of energy at the system level (not just at end-users)
- global concept

Demo projects' key facts

- national Technology Platform for Smart Grids
 - established in 2006
 - 39 members
 - international cooperation (Austrian National Platform, Croatia, SmartGrids ERA NET)
- demo projects
 - Elektro Gorenjska AMI (19.0 Mio. €)
 - ELES SmartGrids (4.7 Mio. €)
 - Supermen (2.1 Mio. €),
 - KiberNet (1.7 Mio. €),
 - CC SURE (10.6 Mio. €),
 - Elektro Celje DMS, ...
 - AMI implementation plan (172 Mio. €)

... demo projects' key facts

... demo projects' key facts

Smart Grids program

- prepared in 2012
- definition/specification of Smart Grids concepts
- plan for mass implementation
- decrease of long-term investments in distribution network
- to enable domestic industry to develop solutions for breakthrough on global markets
- to pursue long-term environmental goals to which Slovenia is committed to
- long-term reliable supply of customers
- two development scenarios
 - basic scenario (without Smart Grids)
 - development scenario (with Smart Grids)

Jniversitas

Labacensis

Long-term effects

 difference between cumulative network investments till 2030 without (red) and with Smart Grids investments (blue)

Jniversitas

Investment timeline

Financing till 2020

 according to development scenario we have to invest in distribution Smart Grids at least € 320 million till 2020

... financing till 2020

- for research (€ 10 million in total)
- all funds from public-private partnership for demonstration projects (€ 32 million in total)
- for network mass implementations (€ 280 million)
 - for AMI € 172 million
- national operational program 2014 2016 (€ 26 million)
- national project application for NER 300 (€ 43 million)
- national project with NEDO Japan (€ 20 30 million)

State-of-the-Art of new technologies

	Technology	Sociology	Economy	Legislation
Metering	\checkmark	Ο	\checkmark	ο
DR / DSM	\checkmark	0	ο	×
Virtual power plant	\checkmark	0	ο	×
Voltage regulation	\checkmark	ο	ο	×
Energy storage	ο	×	×	×
E-mobility infrastructure	ο	×	×	×

Universitas Labacensis

Foreseen project clusters and goals

- advanced measurement of household consumers
 - 50% lower cost of meter reading, 50% lower cost of commercial losses
- active management of consumption and generation
 - 5% lower system peak load
- modern concepts of interconnection and operation of RES
 - 50% lower investment cost of RES interconnection
- quality management
 - 20% lower investment cost for power quality assurance
- active management of EV infrastructure
 - 50% lower peak load of EV charging
- islanding operation
- all together over 120 project proposals in the national plan

Operational plan – main focus (2013)

	Technology	Sociology	Economy	Legislation
Metering	\checkmark	0	\checkmark	ο
DR / DSM	~	0	0	×
Virtual power plant	~	0	0	×
Voltage regulation	✓	0	ο	×
Energy storage	ο	×	×	×
E-mobility infrastructure	ο	×	×	×

Operational plan – locations

Importance for the economy

- role of Slovenian industry in setting up Smart Grids
- Slovenian industry needs a test polygon for solutions sales reference
- strong electronic and electrical industry in Slovenia
 - over € 3 billion annually turnover
 - more than 70% of export
 - over 30,000 employees

Conclusions

- new elements are introduced in the electrical power system • causing additional costs (distributed generation, EV infrastructure, ...)
- today in average each installed kW of distributed generation causes € 450 of additional investments in distribution network
- development of Smart Grids is driven by industry ٠
- global market is estimated at over € 100 billion annually ۲
- investments in primary equipment can be with Smart Grids • substantially reduced
- Smart Grids do not mean that investments in primary equipment will not be required any more

... conclusions

- with Smart Grids cost of electricity for end-user will not be decreased
- cost of electricity with Smart Grids will be definitely lower than without Smart Grids
- in implementation phase Smart Grids will increase network investments
- in the long run Smart Grids provide lower network investments
 - till 2030 around € 500 million of savings in distribution network investments in Slovenia

I wish every success to the Croatian Technology Platform for Smart Grids and congratulations on EU membership!