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Abstract

In this paper we develop and verify a model predictive control algorithm for photovoltaic panel orientation with the
aim to maximize the photovoltaic system netto power production. Thereby we take into account local weather forecast
with its uncertainty, thermal behavior of the panel, and the positioning system energy consumption with its technical
constraints. The model predictive control synthesis procedure comprises two basic steps: (i) identification of solar irra-
diance model and development of the photovoltaic system model and (ii) development of predictive control algorithm
for the photovoltaic panel active surface orientation, based on the obtained models. Performance of the developed al-
gorithm is verified through year-scale simulations based on a large number of solar irradiance and other weather data
patterns. It turns out that the proposed algorithm is fully competitive with the mostly used sun tracking or maximum
irradiance seeking controls, and that it outperforms them. The other advantages of the proposed algorithm are: (i) the
positioning system is controlled smoothly and (ii) prediction of energy yield one day ahead is available together with
its uncertainty for easier photovoltaic system integration into the electricity distribution network.

Keywords: Photovoltaic system with dual-axes positioning, Solar radiation modelling, Unscented transformation,
Model predictive control, Stochastic optimization

1. Introduction

Importance of renewable energy sources in the world
grows rapidly due to the following reasons: (i) renew-
able sources represent an inexhaustible potential of en-
ergy for the future, (ii) price fluctuations and limited re-
sources of fossil fuels that are still dominant in theworld’s
energy sources structure, (iii) the aspiration of national
economies towards energy independence, etc. Among re-
newable sources, solar energy is one of the most promis-
ing nowadays [1] and is predicted by numerous analyses
to become the mostly used energy resource by 2050 [2].

Stochastic and intermittent nature of the solar energy
resource is an aggravating circumstance for the mass use
of photovoltaic (PV) systems and their integration into
utility grids. PV panels power production mainly de-
pends on the available solar irradiance. The total solar ir-
radiance that reaches the surface of the PV panel in the
form of the direct and diffuse irradiance, is influenced by
the PV panel active surface orientation. The computation
of trajectory for the PV panel active surface orientation (in
short: positioning trajectory) throughout a day can be re-
alized in an open-loop or a closed-loop fashion. The open-
loop systems pre-compute trajectories for the individual
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axes positioning systems based on weather forecast data
which is refreshed once or several times a day. The closed-
loop systems use the information on the current weather
conditions (most usually photo sensors) to compute the
trajectories.

The authors in [3] proposed closed-loop control system
to maximize the solar irradiance incident with the active
surface of a PV panel which is necessarily based on the
maximum seeking control strategies (perturb and observe
principle). Due to the permanent position changes, these
systems can spendmore energy than they gain, especially
when the weather is changing. Many commercial posi-
tioning systems are realized as open-loop control systems
where they use predefined trajectories for tracking the so-
lar disk position. In this way, most of the direct irradiance
is being harvested since rays of the solar disk are perpen-
dicular to the active surface of a PV panel. However, dur-
ing cloudy conditions when diffuse irradiance prevails,
this algorithm does not increase energy output of a PV
system. A vast majority of the developed open-loop con-
trol systems presumes clear-sky conditions [4, 5]. The au-
thors in [6, 7] proposed advanced open-loop control sys-
tem, where they use model predictive control for maxi-
mizing energy output of a PV system. Because of the sim-
plicity of the used solar irradiance prediction model, pro-
posed method is meant only for clear-sky conditions, and
yet in a deterministic framework. Presuming clear-sky
conditions is appropriate for climates with a large num-
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ber of sunshine hours, but additional gain is achievable by
taking varying weather conditions into account. The au-
thors in [8] proposed that during the clear-sky conditions
a PV panel should track the solar disk since direct irradi-
ance prevails, while during the overcast conditions when
diffuse irradiance prevails, a PV panel should be placed
horizontally, since diffuse irradiance is scattered all over
the sky. Although proposed method shows good results,
there is no clear algorithmic distinction between clear-sky
and overcast conditions.

This paper presents a method for determining the max-
imumnetto energy gain trajectories of the open-loop dual-
axes positioning system in a stochastic framework, by con-
sidering: (i) local weather forecast and its uncertainty, (ii)
solar irradiance model and its uncertainty, (iii) dynamic
panel temperature model, and (iv) positioning system en-
ergy consumption with its technical constraints. In the
used framework ofmodel predictive control this leads to a
constrained nonlinear optimization problem, and for solv-
ing it an evolutionary algorithm called Differential Evo-
lution (DE) [9, 10] is applied. Data flow diagram of the
proposed control algorithm is shown in Figure 1.
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Figure 1: Data flow diagram

The paper is structured as follows. In Section 2 a
neural-network-based identification of parametric direct
(normal) and diffuse (horizontal) solar irradiance models,
along with development of uncertainty of the identified
models is described. In Section 3 a PV systemmodel is in-
troduced, considering the uncertainty of available meteo-
rological data and of the developed solar irradiance mod-
els. In Section 4 a method for determining the maximum
efficiency trajectories of the open-loop dual-axes position-
ing system, based on DE, is presented. Simulation-based
study of the developed algorithm and its comparisonwith
state-of-the-art dual-axes positioning approaches is pre-
sented within Section 5.

2. Identification of neural-network-based direct and
diffuse solar irradiance models

Knowledge of the local solar irradiance is essential for
the proper design of model predictive control algorithm
that maximizes the production of electrical power by the
PV system. To this aim, a parametric model [11] for site-
specific direct (normal) and diffuse (horizontal) solar irra-
diance as static functions of geographical andmeteorolog-
ical data is developed. For that purpose we use Radial Ba-

sis Function (RBF) type neural network [12, 13]. Its train-
ing is performed on past geographical and meteorologi-
cal data and solar irradiance measurements [14, 15] taken
from the National Solar Radiation Data Base (NSRDB)
for Washington DC Dulles International Airport (WDC
Dulles) for period 1996–2003, and its validation is per-
formed for period 2004–2005. Input data used for neural
network training are: (i) solar zenith angle, (ii) local air
pressure, (iii) dry-bulb temperature, (iv) precipitable wa-
ter vapor thickness, (v) aerosol optical thickness, (vi) total
cloud cover, and (vii) opaque cloud cover.

Solar irradiance data available in NSRDB are in one-
hour resolution and represent the energy received per
unit area via corresponding irradiance type within the
hour-interval that ends at the time-stamp, named solar in-
solation [16]. This fact must be especially taken care of
since our goal is to obtain the static model of the current
solar irradiance that takes current geographical and me-
teorological data as inputs. The RBF network input data
is therefore distanced one minute in time, such that linear
interpolation of NSRDB full-hour data is used to compute
the input meteorological data for the model. The input
geographical data for the model (i.e. solar zenith angle) is
obtained via known relations for calculating the sky po-
sition of the solar disk [17]. The solar irradiance neural
network output data are for training reasons integrated
on an hour time-scale and compared with NSRDB data.
Prior to neural network training process, output data are
filtered in order to retain only high-quality direct–diffuse
irradiancemeasurement pairs for identification. For more
details on used neural network structure see [18].

2.1. Objective function
The neural network is trained by numerical procedure

that tends to minimize the following criterion:

= ≡ 1

2

N∑
i=1

e2(Xi,Θ), (1)

where X is the set of NSRDB input data,Θ are neural net-
work parameters, N is the number of data Xi in different
time (full-hour) instants and the error e is defined as:

ei ≡ e(Xi,Θ) = INSRDB,i −
τ∑
j=0

[kjf(Xi,j ,Θ)], (2)

where f is the trained solar irradiance function, INSRDB,i
is solar insolation entry in NSRDB for either direct or dif-
fuse solar irradiance, the sum represents a numerical inte-
gral of function f within the hour, τ is either 60 or smaller
(smaller only for the cases of sunrise and sunset hours),
Xi,j are input data within the hour i on the minute reso-
lution – linearly interpolated meteorological data within
the hour or the computed instantaneous solar zenith an-
gle, and kj are numerical integration weights given with:

kj =

{ 1
2

1
60 for j = 0, τ,
1
60 otherwise.

(3)
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2.2. Identification results

Separate neural networks are trained for the direct and
diffuse solar irradiance. Performance measures used for
models verification on the validation data set are Mean
Bias Error (MBE) and Root Mean Square Error (RMSE):

MBE =
1

N

N∑
i=1

ei, RMSE =

√√√√ 1

N

N∑
i=1

e2i . (4)

The validation data set consists of the data for WDC
Dulles in period 2004–2005. The validation results of the
developed models and of the most competitive existing
parametricmodel –METSTAT [19] are presented in Figure
2(a) for the direct (normal) solar irradiance, and in Figure
2(b) for the diffuse (horizontal) solar irradiance models.
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(a) Direct irradiance measurements and model output comparison
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(b) Diffuse irradiance measurements and model output comparison

Figure 2: Solar irradiance measurements and model output comparison

The neural network training is approached by a gradi
ent-based Levenberg-Marquardt algorithm [18, 20] and a
population-based Particle SwarmOptimization algorithm
[21, 22]. Both trainings are performed a large number of
times starting from random initial parameters, with ex-
ception of Gaussian functions variance [23], and using dif-
ferent hidden layer size, in order to ascertain that the best
performing neural network is near the global optimum.

Table 1 shows performance indicators of the developed
models and of theMETSTATmodel on the validation data
set. It can be observed that the developed site-specific
solar irradiance parametric model realized through RBF
neural networks gives significantly better results than a
non-site-specific parametric model like METSTAT.

Table 1: Performance measures values (Wm−2)

Direct irradiance Diffuse irradiance
MBE RMSE MBE RMSE

Our model 19.00 157.28 1.00 61.85

METSTAT 59.57 213.60 1.18 82.55

2.3. Uncertainty of the developed models
The developed solar irradiance models are extended

with their uncertainty. To this aim, a grid in direct–
diffuse irradiance space is formed, with a resolution of 20
Wm−2. Each grid cell contains direct–diffuse irradiance
pairs from which bias and variance is calculated.

Cell bias ebd,i is defined as a vector that contains direct
and diffuse irradiance mean errors:

ebd,i =
[

1
mi

∑mi

k=1 eb,i,k
1
mi

∑mi

k=1 ed,i,k
]>
, (5)

wheremi is a number of direct–diffuse irradiance pairs be-
longing to the ith grid cell, while eb,i,k and ed,i,k aremodel
errors calculated with (2). Covariance matrix Pbd,i of the
ith grid cell is defined as:

Pbd,i =
1

mi
σiσ

>
i , (6)

where deviation σi is defined as:

σi =
(
ymdl,i − ymeas,i

)
	 ebd,i = ẽi 	 ebd,i, (7)

where ymdl,i and ymeas,i are integrated solar irradiance
model output within the hour and measured insolation
from NSRDB, respectively, for the entire ith grid cell. In
equation (7), operator	 is defined as a subtraction of each
column of matrix ẽi with column vector ebd,i. Matrix ẽi is
of dimension 2×mi.

Developed solar irradiance models output is in the
minute resolution, while measured insolation in NSRDB
is in the hour resolution. In order to compare these
samples, a numerical integration within the hour is per-
formed. The direct–diffuse samples of a certain hour are
placed in the appropriate grid cell based on the minute
sample that is in the middle of the analyzed hour.

3. Photovoltaic system model

In this section two models are introduced: (i) a model
for solar irradiance incident with a tilted surface and (ii) a
PV panel power production and thermal model.

3.1. Solar irradiance incident with a tilted surface
There aremanymodels developed recently [24, 25] used

to calculate solar irradiance incident with a tilted surface
from known direct (normal) and diffuse (horizontal) solar
irradiance components. Main difference between them is
in the concept of whether or not the diffuse solar irradi-
ance is isotropically distributed over the sky. The authors
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in [26] reported that Klucher’s anisotropic model shows
the best approximation abilities, and it is thus used here.

The total solar irradiance incident with a tilted surface
It,T comprises three basic components: (i) beam com-
ponent Ib,T , (ii) sky diffuse component Id,T , and (iii) re-
flected component Ir,T :

It,T = Ib,T + Id,T + Ir,T . (8)

Solar irradiance components incident with a tilted surface
can be expressed as (Klucher’s anisotropic model) [27]:

Ib,T = Ib cos θ,

Id,T = Id cos
2 β

2

[
1 + F sin3 β

2

][
1 + F cos2 θ sin3 θz

]
,

Ir,T = ρ(Ib cos θz + Id) sin
2 β

2
,

(9)

where Ib and Id are direct (normal) and diffuse (horizon-
tal) solar irradiance components, respectively, θ is the an-
gle between the sun direction and the normal direction of
a tilted surface, θz is the zenith angle of the sun, β is the
tilt angle above horizon of a tilted surface, ρ is the ground
albedo and F is a modulating function defined by:

F = 1− Id
It
, (10)

where It is the total solar irradiance incident with a hori-
zontal surface, defined as:

It = Ib cos θz + Id. (11)

The angle between the sun direction and the normal di-
rection of a tilted surface, with angles description shown
in Figure 3, can be expressed as [28]:

cos θ = cos θz cosβ + sin θz sinβ cos(γs − γ), (12)

where γs and γ are the solar and the PV panel’s active sur-
face azimuth angles, respectively.

Zenith

Normal to
horizontal

Normal to
tilted surface
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γ
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Figure 3: Zenith angle θz , angle of incidence θ, tilt angle β and azimuth
angle γ for a tilted surface [28]

3.2. Stochastic characterization of solar irradiance incident
with the PV panel active surface

The Unscented Transformation (UT) is introduced to
obtain the statistical description of the overall irradiance
on a tilted surface based on the statistical description of
input meteorological data and of the developed solar ir-
radiance models. UT is a method for calculating the sta-
tistical description of a random variable which undergoes
a nonlinear transformation [29].

Consider propagating a random variable x through a
nonlinear function, y = f(x). Assume x has mean x̄ and
covariance Px. To calculate the statistics of y, in terms of
approximation of its mean ȳ and covariance Py, a matrix
X of sigma vectors X i is formed, according to:

X =
[
x̄, x̄⊕ α

√
Px, x̄	 α

√
Px
]
, (13)

where⊕ and	 are operators for summation and subtrac-
tion of column vector on the left with each column of a
matrix on the right, respectively, and α is a weighting fac-
tor. The sigma vectors X i, being the columns of X , are
then propagated through the nonlinear function:

Yi = f(X i), i = 0, . . . , 2L, (14)

where L is the dimension of the input variable x. The
mean and the covariance for output y are approximated
using a weighted sample mean and covariance of the pos-
terior sigma points:

ȳ ≈
2L∑
i=0

W
(m)
i Yi, (15)

Py ≈
2L∑
i=0

W
(c)
i {Yi − ȳ}{Yi − ȳ}>, (16)

where W (m)
i and W

(c)
i are weighting factors. UT is se-

lected since it has a superior performance in approximat-
ing ȳ and Py compared to techniques that reside on point-
wise linearization of the nonlinear function f [29].

Figure 4 shows the computation sequence in the
stochastic characterization of solar irradiance incident
with the PV panel active surface. Input meteorological
datawith corresponding uncertainty (see Section 2) is rep-
resented with sigma vectors as described in equation (13).
For each of the 15 obtained sigma vectors, the direct and
diffuse solar irradiance is calculated using the developed
solar irradiance RBF neural network model.

To take into account the uncertainty of the RBF neu-
ral network model itself (see Section 2.3), the obtained
set of 15 direct–diffuse solar irradiance pairs is extended
with additional pairs, in a way that each of the generated
15 points in R2 is characterized with sigma vectors that
represent the point stochastic description in terms of RBF
models uncertainty. They designate the possible locations
of the actual direct–diffuse pair when the uncertainties of
the input data and the RBFmodel act simultaneously. The
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Figure 4: Stochastic characterization computation sequence

UT is then performed on the resulting set of 75 direct–
diffuse pairs based on given β and γ, and the result is
the stochastic characterization of total solar irradiance in-
cident with the PV panel active surface.

3.3. Power production and thermal model of a PV panel

The PV panel temperature is a function of the weather
conditions, the PV panel configuration, the physical pa-
rameters of the PV panel material and of the surrounding
environment. A simple static model of PV panel cannot
provide satisfactory results during periods of fluctuating
changes in solar irradiance (i.e. when a cloud suddenly
covers the sun) [30] and it is therefore necessary to use a
dynamic PV panel thermal model in advanced PV panel
positioning control applications.

Panel temperature estimation is based on heat trans-
fer between the PV panel and its environment. All three
modes of heat transfer are considered [31]: (i) conduc-
tion, (ii) convection, and (iii) radiation. Besides aforemen-
tioned heat transfer modes, generated electrical output
power is also a form of heat removal. Combining these
forms of heat transfers we reach the final mathematical
model that describes the thermal dynamics of a PV panel:

Cm
dTm
dt

= qsw + qlw + qconv − Pout, (17)

whereCm is the lump heat capacity of the panel, Tm is the
panel temperature, qsw and qlw are short- and long-wave
radiation, qconv is heat convection, andPout is the PVpanel
generated electrical power. The PV panel output power
is implemented in a form of a 2D array, determined by
incident solar irradiance and the PV panel temperature,
with a resolution of 1 Wm−2 and 1 ◦C.

4. Model predictive control of orientation of the PV
panel active surface

This section describes a method for determining the tilt
and azimuth angle trajectories for maximum energy pro-
duction of the PV system. Thereby the following is con-
sidered: (i) local weather forecast and its uncertainty, (ii)
solar irradiance model and its uncertainty, (iii) dynamic
panel temperature model, and (iv) positioning system en-
ergy consumption with its technical constraints.

4.1. The optimization problem
Objective function used in the consideredmaximization

procedure is defined as a netto produced electrical energy
of a PV system on a daily sunshine-duration time horizon:

= ≡ h(β,γ) = Enetto = Epv − Ec, (18)
where Epv is the overall produced electrical energy of the
PV system on the considered prediction horizon, Ec is
energy consumption of the positioning system given in a
form of the angle change dependent functions [6, 7], and
β and γ are tilt and azimuth angle time-dependent trajec-
tories, defined as follows:

β =
[
β0 β1 . . . βN−1

]>
,

γ =
[
γ0 γ1 . . . γN−1

]>
,

(19)

where βk and γk denote constant tilt and azimuth angles
on time interval [kT, kT + T ), where k ∈ Z, and T is the
time resolution of positioning.

The nonlinear optimization constraints thatmust be ful-
filled are defined as follows:

βmin ≤ β ≤ βmax, β ∈ RN , (20a)
γmin ≤ γ ≤ γmax, γ ∈ RN , (20b)
βk = mββq, mβ ∈ Z, (20c)
γk = mγγq, mγ ∈ Z, (20d)

where βmin, βmax, γmin and γmax are minimum andmax-
imum allowed surface tilt and azimuth angles, respec-
tively, βq and γq are the positioning system resolution
quants for tilt and azimuth angles, and N is the predic-
tion horizon of the control problem.

Expressions (20a) and (20b) force the trajectories β and
γ to stay inside the range of motion, and expressions (20c)
and (20d) represent quantisation effect of the considered
positioning system. The constraints are posed solely on
the manipulated variables which results in a trivial space
of feasible points and facilitates search for the optimum.

The optimization procedure is performed in a stochas-
tic framework, with optimization goal that tends to max-
imize the expectation of netto produced electrical energy
of a PV system:

J(β,γ) = E
{
Enetto

(
β,γ,M,G,C0

)}
, (21)

where E(·) is the expectation of the observed variable, M
andG are meteorological and geographical data with un-
certainties for the sunshine period of the day, and C0 are
initial conditions:

C0 =
(
β−1, γ−1, Tm0

)
, (22)

where β−1 and γ−1 define the initial (sunrise) position of
the active surface, andTm0 is the panel initial temperature.
Considering these facts, the final optimization problem

can be rewritten as:

J∗(β,γ) = max
β,γ

E
{
Enetto

(
β,γ,M,G,C0

)}
, (23a)
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s.t.


βmin ≤ β ≤ βmax, β ∈ RN ,
γmin ≤ γ ≤ γmax, γ ∈ RN ,
βk = mββq, mβ ∈ Z,
γk = mγγq, mγ ∈ Z,

(23b)

with respect to (i) developed solar irradiance model with
its uncertainty, (ii) tilted surface model, and (iii) power
production and thermal model of a PV panel.

4.2. Differential evolution
Differential Evolution (DE) is a method that optimizes

a problem solution by iteratively trying to improve a can-
didate solution with regard to a given measure of quality
that is defined through objective function. DE’s most ver-
satile implementation maintains a pair of vector popula-
tions, both of which containNP D-dimensional vectors of
real-valued optimization variables [10]. The current pop-
ulation size does not change during optimization process.

Gradient-based optimization techniques are inapplica-
ble in the considered optimization problem because of
the nature of the Unscented transformation, where poste-
rior mean and covariance is computed based on so-called
sigma points mapping instead of single point mapping.
Differential evolution as one of non-gradient-based point-
wise optimization techniques was chosen for several rea-
sons: (i) easy parallelization of the algorithm and (ii) feasi-
ble optimization point can be trivially found since the con-
straints are imposed directly on manipulated variables.

The current population, denoted with Pu, is composed
of those vectors ugi that have already been found to be
acceptable either as initial points, or by comparison with
other vectors (i.e. solutions):

Pgu =
{

ug1 ug2 . . . ugNP

}
, (24a)

ugi =
[
ugi,1 ugi,2 . . . ugi,D

]
, (24b)

where index g indicates the generation to which a vector
belongs. In addition, each vector in population Pu is as-
signed a population index i. In given optimization prob-
lem, candidate solutions u of dimensionD = 2N are rep-
resented with tilt and azimuth angle trajectory:

u =
[
β> γ>

]>
, u ∈ R2N . (25)

Once initialized, DE mutates each vector of the current
population creating an intermediary population Pm ofNP
mutant vectors mg

i :

Pgm =
{

mg
1 mg

2 . . . mg
NP

}
, (26a)

mg
i =

[
mg
i,1 mg

i,2 . . . mg
i,D

]
. (26b)

For each vector from the current population, amutant vec-
tor is generated according to:

mg+1
i = ugb + F (ugr1 − ugr2) = ugb + F∆ugr1,2, (27)

where ugb is the best unit from the current population Pgu,
r1 and r2 are random integer mutually different indices
with the uniform distribution on interval [1, NP ], and F
is the so-called spreading factor – real and constant factor
from interval [0, 1], which controls the amplification of the
differential variation ∆ugr1,2. This type of mutation strat-
egy is known as a DE/Best/1 mutation [32]. If number of
current population vectors is high enough, it is possible to
use two differential variations in mutation process, which
can improve the diversity of the population [9].

Each vector in the current population is then recom-
bined with its mutant to produce a trial population Pc of
NP trial vectors cgi :

Pgc =
{

cg1 cg2 . . . cgNP

}
, (28a)

cgi =
[
cgi,1 cgi,2 . . . cgi,D

]
. (28b)

Aforementioned vector recombination is often referred
to as crossover. In literature, there are many types of
crossovers [10], each suitable for certain types of optimiza-
tion problems. In considered optimization problem, we
use weighted arithmetic crossover:

cg+1
i = wugi + (1− w)mg+1

i , (29)

where w is a user-defined weighting factor from interval
[0, 1]. During crossover trial vectors overwrite the mutant
population, so a single array can hold both populations in
the implementation.

The last operation in a single iteration of the DE al-
gorithm is called selection. To decide whether or not it
should become amember of next generation, the trial vec-
tor cg+1

i is compared to the target vector ugi using the
greedy criterion. If vector cg+1

i yields a better objective
function value than ugi , then ug+1

i is set to cg+1
i , otherwise

the old value ugi is sustained. In the consideredmaximiza-
tion problem, this can be formulated as:

ug+1
i =

{
cg+1
i , if J(cg+1

i ) ≥ J(ugi ),
ugi , otherwise, (30)

where J is the previously defined objective function (21).
Compared to gradient-based optimizers, evolutionary

algorithms demand more processing capacity because
they typically requiremore objective function evaluations.
The time required to generate trial vectors is small com-
pared to the time needed to evaluate the objective func-
tion. In real-world applications, it is not uncommon for
the objective function evaluation to consume more than
95% of the total CPU time. The need for faster process-
ing is particularly acute when optimizing objective func-
tions evaluated via simulations, since an acceptable solu-
tion may require tens of thousands of objective function
evaluations. An efficient parallel approach to such prob-
lems is crucial, since a serial processormay take hundreds
of hours to optimize models based on simulations. Since
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objective function evaluations for units within one gener-
ation are not mutually dependent, this task is distributed
on all available processor units via a parallel computing
engine, like Matlab R© Parallel Computing Toolbox [33].

Evolutionary algorithms like DE are commonly known
as metaheuristics as they make few or no assump-
tions about the problem being optimized. However, for
faster convergence, we propose the following initializa-
tion method of the population P0

u:

• 20% of the population is generated randomly with
uniform distribution over the search space, with re-
spect to the upper and lower bounds,

• 30% of the population is generated randomly within
±5◦ of the solar zenith and azimuth angle trajectory,
with uniform distribution,

• 30% of the population is generated randomly within
±5◦ of the tilt and azimuth angle trajectory that in-
stantly maximizes incoming solar irradiance,

• 20% of the population is generated randomly within
±5◦ of the optimal tilt and azimuth fixed angles on
a daily basis, with uniform distribution. These opti-
mal angles are obtained via separate DE optimization
process, where all units of the current population are
initialized randomly with uniform distribution over
the search space.

Proposed method of the current population initialization
performs coarse and fine search for an optimal solution.

A very important part of DE optimization is implemen-
tation of stopping criteria. The stopping criteria are im-
plemented as follows [34]:

• Exhaustion-based criteria – when maximum number
of generationsGmax is reached, the optimization pro-
cess is terminated. After preliminary tests, maximum
number of generations is set to be Gmax = 500.

• Improvement-based criteria – if there is no improve-
ment over some predefined number of generations,
the optimization process is terminated. For this pur-
pose we compare best units of the current generation
population Pgu and the population distanced from the
current one by 25 generations Pg−25u .

• Distribution-based criteria – for DE usually all indi-
viduals converge to the optimum eventually. There-
fore, it can be concluded that convergence is reached
when the individuals are close to each other. For this
purpose we compare the current population’s best
andworst unit. If the difference between the best and
theworst unit’s objective function value iswithin 0.01
Wh, the optimization process is terminated.

Because of the implemented stopping criteria, the posi-
tioning system trajectories determined with the optimiza-
tion are not guaranteed to be the best possible. In order

to use the proposed procedure in applications, optimiza-
tion time and computational effort have to be taken into
consideration. The DE parameters and the stopping crite-
ria are tuned in such a way to keep the computation time
acceptable for the particular application.

4.3. Used model predictive control scheme

We propose an open-loop model predictive control
scheme where the optimal tilt and azimuth angle trajec-
tory is computed once a day, typically just before sunrise.
The optimization considers the available local weather
forecast for the entire day, with its corresponding uncer-
tainty, and the current PV panel orientation and temper-
ature. The optimal β and γ sequence is then transmit-
ted to the positioning controller for daily execution. The
discretization time T used in our approach is 15 min, set
heuristically considering optimization process complexity
and overall weather dynamics.

The other advantages of the proposed algorithm are: (i)
the positioning system is controlled smoothly which re-
duces the positioning mechanism-outwear compared to
counterpart closed-loop control systems and (ii) predic-
tion of energy yield one day ahead is available together
with its uncertainty for easier integration into the higher-
level smart grid control applications.

5. Results

Developed open-loop control algorithm for dual-axes
positioning system is first tested on three exemplary days
with different cloudiness: (i) clear-sky, (ii) partly cloudy,
and (iii) overcast. Then a year-scale comparison of de-
veloped algorithm with the open-loop solar disk track-
ing and the closed-loop maximum irradiance seeking al-
gorithms is performed. All results presented in this sec-
tion are given for the WDC Dulles location for the year
2005. The proposed method is general and gives the opti-
mal results for the applied (i) solar irradiance prediction
model, (ii) dynamic panel power production and thermal
model, and (iii) the positioning system energy consump-
tionmodelwith its technical constraints. Generality of the
proposed method remains even in the case when the ap-
plied models are replaced with the more detailed ones.

5.1. Simulation scenario

We consider 15 poly-Si PV panels SV60–235 (single
panel power rating: 235Wp) manufactured by Solvis Ltd.
with overall active surface area of A = 24.895m2, with
the dual-axes positioning system described in [6, 7]. The
explained procedure is verified on three exemplary days
with different cloudiness: (i) clear-sky, (ii) partly cloudy,
and (iii) overcast weather conditions. Simulation scenar-
ios for considered exemplary days are shown in Figure 5,
where referenced figure shows expected profile of the di-
rect (normal) and diffuse (horizontal) solar irradiance.
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(a) Expectation of solar irradiance components for the clear-sky day

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
0

200

400

600

800

1000

1200

1400

Time − t [h]

So
la

r i
rr

ad
ia

nc
e,

 [W
/m

2]

 

 

Direct (normal) irradiance
Di�use (horizontal) irradiance

(b) Expectation of solar irradiance components for the partly cloudy day
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Figure 5: Expected profile of the direct (normal) and diffuse (horizontal)
solar irradiance components for considered three exemplary days

All input meteorological data are assumed to be subject
to a Gaussian uncertainty, where data variance is given in
a form of percentage points of the data expected value.
In some cases variance is held at constant value, while in
other cases it linearly increases during the day from 0%
to some final value: (i) aerosol optical thickness and pre-
cipitable water vapor thickness is with constant variance
of 5% during the day, (ii) total and opaque cloud cover
variance linearly increases with an end-day variance of
20%, (iii) dry-bulb temperature variance linearly increases
with an end-day variance of 10%, and (iv) local air pres-
sure variance linearly increases with an end-day variance
of 0.5%. The input geographical and time data, i.e. the in-
stantaneous zenith angle is assumed to have 0% variance.

During clear-sky conditionswhen direct irradiance pre-
vails, optimal trajectory is the one tracking the solar disk.
In this way, angle between the sun direction and the ac-
tive surface normal is always θ = 0◦, and according to
(9) direct irradiance component is best harvested. During
overcast conditions when diffuse irradiance prevails, op-
timal trajectory would be the fixed active surface, with the
tilt angle β = 0◦. In this waymost of the diffuse irradiance

component is being harvested, since diffuse irradiance is
scattered all over the sky. For clear-sky and overcast con-
ditions optimal trajectory is well known. However, dur-
ing partly cloudy conditions when neither direct or dif-
fuse component is dominant, optimal trajectory makes a
compromise between harvesting direct and diffuse solar
irradiance components.

5.2. The considered positioning system
The positioning system must be described with a

proper model in order to be included in the optimiza-
tion procedure. It must be noted that the complexity
of the applied model can substantially increase the re-
quired computational effort and consequently the time
required for optimization. In this paper, the positioning
system energy consumption model is given in the form
of the angle-change-dependent characteristics [6]. Angle-
change-dependent energy consumption characteristics of
the considered positioning system are shown in Figure 6.
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Figure 6: The positioning system energy consumption characteristics [6]

The considered positioning system (i) minimum and
maximum allowed surface tilt and azimuth angles, βmin,
βmax, γmin and γmax are 0◦, 85◦, 75◦, and 285◦, respec-
tively, and (ii) resolution quants, βq and γq , are 0.01◦.

5.3. Optimal trajectories on three exemplary days
Optimization process begins with prediction of ex-

pected solar irradiance on the prediction horizon of one
day based on the developed site-specific solar irradiance
models as described in Section 2. Uncertainty of the devel-
oped irradiance model is also taken into account in a form
of a standard deviation around expected solar irradiance.
Up to this step, calculation does not depend on the PV
panel’s active surface tilt and azimuth angles. However,
to calculate solar irradiance incident with a tilted surface
and later power production profile, tilt and azimuth an-
gles of the active surface must be known. As tilt and az-
imuth angles over prediction horizon are represented via
DE’s candidate solution ugi , this step is performed repeat-
edly in each candidate solution evaluation.

In DE optimization algorithm evaluation procedure,
three different types of the dual-axes positioning system
trajectories for tilt and azimuth angles are compared: (i)
optimal trajectory obtained by DE optimization as de-
scribed in Section 4, denoted with OPT, (ii) solar disk
tracking by its zenith and azimuth angles, denoted with
SUN, and (iii) tilt and azimuth angle trajectory that in-
stantly maximizes incoming solar irradiance regardless

8



to the positioning system energy consumption, denoted
with REC. Aforementioned trajectories are evaluated by
calculating netto energy production gain of the PV sys-
tem in a stochastic framework, for each exemplary day.
Numerical results of the PV panel netto energy produc-
tion over the whole exemplary day for different trajecto-
ries are shown in Table 2. As it can be seen, greatest im-
provement of optimal trajectory compared to solar disk
tracking is during partly cloudy and overcast conditions,
while compared to trajectory for instantaneousmaximiza-
tion of incoming solar irradiance that is the case during
partly cloudy conditions.

Table 2: The PV system netto energy production (Wh)

Optimal traj. Sun tracking Max. irrad.
OPT SUN REC

Clear-sky 28322 28303 28305

Partly cloudy 12754 12602 12736

Overcast 3461 3273 3457

OPT – Optimal trajectory obtained by DE, SUN – Solar disc tracking,
REC – Trajectory for instantly maximiz. of incoming solar irradiance

Figure 7 and Figure 8 show (i) optimal trajectory ob-
tained by DE optimization, (ii) solar disk zenith and az-
imuth angles, and (iii) optimal daily PV panel fixed an-
gles. In Figure 7 uncertainty of the input meteorological
data and of the developed solar irradiance models is ne-
glected, while it is included in Figure 8.

During clear-sky condition optimal trajectory follows
the sky position of the solar disk in order to maximize di-
rect solar irradiance harvesting. Note that there is no ma-
jor difference between optimal clear-sky trajectories in de-
terministic and stochastic framework, since probability for
sudden change in cloudiness is minimal. During overcast
condition in deterministic framework, PV panel is in rest
since it is not profitable to reposition in order to harvest
minimal portion of direct irradiance, while in stochastic
framework where there exists probability of higher por-
tion of direct irradiance, PV panel repositions but still on
low tilt angles in order to harvest most of the available dif-
fuse solar irradiance. During partly cloudy condition, PV
panel stays on low tilt angles when diffuse irradiance pre-
vails, and follows the sky position of the solar disk when
direct irradiance prevails. In the stochastic environment
during cloudy part of the day, tilt angle is larger compared
to the deterministic environment due to accounted gain of
possible increase in direct irradiance.

5.4. Tuning DE strategy parameters
In model predictive control, optimization time and

computational effort can be an aggravating circumstance
for its practical use. Besides the complexity of the model
involved, strategy parameters used within DE optimiza-
tion algorithm also significantly affect optimization time.
DE algorithm is implemented with support of Matlab R©

Parallel Computing Toolbox [33], using all available pro-
cessor units. Optimization is performed on the following
computer configuration:

Intel(R) Core(TM)2 Quad CPU,
Q8300 @ 2.50GHz 2.50GHz,
4,00 GB of RAM (3,44 GB usable),

where optimization time for each day is estimated to be
nearly 12 min in average. DE optimization strategy pa-
rameters are tuned via trial–error method, considering
quality of found solution and optimization time.

5.5. Algorithms comparison on a year-scale
In order to get more realistic picture about the improve-

ment that the proposed predictive control offers, its evalu-
ation is performed on a year-scale. Performance compari-
son of dual-axes positioning systemwith single-axis or no
positioning is alreadywell known [35, 36], and herewe fo-
cus on comparison between the proposed and most com-
monly used dual-axes positioning algorithms. Input me-
teorological and geographical data are taken fromNSRDB
for the year 2005. Evaluation scenario consists of 100 dif-
ferent direct (normal) and diffuse (horizontal) irradiance
components profiles, that are generated via random num-
ber generator with Gaussian distribution, with respect to
expectation and variance of irradiance components at full
hour. Minute resolution of solar irradiance components
is obtained by linear interpolation between full hour sam-
ples. Daily netto energy production is calculated as a
mean value of all 100 daily scenarios.

Figure 9 shows (i) overall monthly insolation per unit
area, (ii) average monthly temperature for sunlight pe-
riod, and (iii) overall monthly netto electrical energy pro-
duction of the considered PV system using three different
types of trajectories: (iii-a) optimal trajectory obtained by
DE optimization, (iii-b) solar disk tracking by its zenith
and azimuth angles, and (iii-c) tilt and azimuth angle tra-
jectory that instantlymaximizes incoming solar irradiance
regardless to the positioning system energy consumption.
Tilt and azimuth angle trajectory that instantlymaximizes
incoming solar irradiance is calculated and evaluated in-
dividually for each of the 100 daily scenarios.

On the year-basis optimal trajectories obtained by DE
optimization give 0.37% increased power production
compared to the solar disk sky position tracking, and
1.27% increased power production compared to the trajec-
tory that instantly maximizes incoming solar irradiance.
The proposed control of orientation of the active surface
gives better results than state-of-the-art solutions, and on
the large scale it can lead to a substantial economic gain.
The proposed approach does not require additional sen-
sors, acts smoothly on the individual axes positioning sys-
tem (taking thewhole day into account for the positioning
decision), and provides the expected power production
together with its variance as data ready for incorporation
in higher-level smart grid control applications [37, 38, 39].
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(a) Tilt and azimuth angle trajectories for the clear-sky day
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(b) Tilt and azimuth angle trajectories for the partly cloudy day
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(c) Tilt and azimuth angle trajectories for the overcast day

Figure 7: Tilt and azimuth angle trajectories of the PV panel positioning
system in a deterministic framework for considered exemplary days
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(a) Tilt and azimuth angle trajectories for the clear-sky day

0

20

40

60

80

100

Ti
lt 

an
gl

e,
 β

 [d
eg

]

 

 

Zenith angle (SUN) OPT FIX

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
60

120

180

240

300

360

Time − t [h]

A
zi

m
ut

h 
an

gl
e,

 γ
 [d

eg
]

 

 

Azimuth angle (SUN) OPT FIX

(b) Tilt and azimuth angle trajectories for the partly cloudy day
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(c) Tilt and azimuth angle trajectories for the overcast day

Figure 8: Tilt and azimuth angle trajectories of the PV panel positioning
system in a stochastic framework for considered exemplary days
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Figure 9: Results of the year-scale evaluation for WDC Dulles

6. Conclusion

In this paper a model predictive control algorithm for
dual-axes positioning system of a photovoltaic system is
described. The model predictive control synthesis pro-
cedure comprises two basic steps: (i) identification of
solar irradiance model and development of the photo-
voltaic system model and (ii) development of predic-
tive control algorithm of photovoltaic panel orientation
based on the obtained models. The proposed method is
general and accounts for: (i) local weather forecast and
its uncertainty, (ii) solar irradiance model and its uncer-
tainty, (iii) dynamic panel power production and thermal
model, and (iv) positioning system energy consumption
with its technical constraints. Generality of the proposed
method remains even in the case when the applied mod-
els are replaced with the more detailed ones. Developed
method for determining maximum efficiency trajectories
shows increased power production in all operating envi-
ronments, compared to the state-of-the-art dual-axes po-
sitioning solutions. The proposed approach does not re-
quire additional sensors, acts smoothly on the position-
ing system, and provides the expected power production
with its variance as data ready for incorporation in higher-
level smart grid control applications.
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