
Partial Mutual Information Based Input Variable Selection for Supervised Learning
Approaches to Voice Activity Detection
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Abstract

The paper presents a novel approach for voice activity detection. The main idea behind the presented approach is to use, next to the
likelihood ratio of a statistical model-based voice activity detector, a set of informative distinct features in order to, via a supervised
learning approach, enhance the detection performance. The statistical model-based voice activity detector, which is chosen based on
the comparison to other similar detectors in an earlier work, models the spectral envelope of the signal and we derive the likelihood
ratio thereof. Furthermore, the likelihood ratio together with 70 other various features was meticulously analyzed with an input
variable selection algorithm based on partial mutual information. The resulting analysis produced a 13 element reduced input
vector which when compared to the full input vector did not undermine the detector performance. The evaluation is performed on
a speech corpus consisting of recordings made by six different speakers, which were corrupted with three different types of noises
and noise levels. In the end, we tested three different supervised learning algorithms for the task, namely, support vector machine,
Boost, and artificial neural networks. The experimental analysis was performed by 10-fold cross-validation due to which threshold
averaged receiver operating characteristics curves were constructed. Also, the area under the curve score and Matthew’s correlation
coefficient were calculated for both the three supervised learning classifiers and the statistical model-based voice activity detector.
The results showed that the classifier with the reduced input vector significantly outperformed the standalone detector based on the
likelihood ratio, and that among the three classifiers, Boost showed the most consistent performance.
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1. Introduction

Voice activity detection is a technique in speech processing
by which presence of speech is detected in a given signal frame.
This problem can be seen as a dual hypothesis problem, where
a signal frame is classified as either containing speech or con-
taining noise. In a voice activity detector (VAD), the absence
of speech usually presumes presence of noise only. This system
is not only of great importance for many applications, like mo-
bile telephony, internet telephony, hearing aid devices, but also
for robotics if speech oriented systems are utilized like speaker
localization, speech and speaker recognition. For most of the
stated research problems, it is indispensable to save on band-
width resources by coding noise with significantly less bits,
while for others it is mandatory to completely ignore frames
with noise.

A VAD must provide a robust and reliable decision pro-
cedure in varying acoustical conditions. This task gets quite
formidable with the varying level and type of background noise.
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Approaches to voice activity detection mostly differ in the type
of the extracted features and in the decision models used to
reach a speech/non-speech decision based on those features. A
lot of attention was given to statistical model-based VADs, in
which certain probabilistic properties are assumed on the coef-
ficients of the discrete Fourier transform (DFT). For an exam-
ple, in [1] they are assumed to have Gaussian distribution and
this approach was further developed in [2–7] and [8]. Further-
more, special attention was given to derivation of various noise
robust features and decision rules in [9, 10] and [11]. Concern-
ing supervised learning approaches, they have been utilized in
various sound processing scenarios, e.g. music classification
[12], general audio signal classification (music, news, sports
etc.) [13], speech inteligibility quantification [14] etc. Super-
vised learning based voice activity detection approaches have
so far been mostly focused on applying support vector ma-
chine (SVM) by treating as features: a priori signal-to-noise
ratio (SNR), a posteriori SNR and/or statistical model-based
likelihood ratio [15, 16], mel frequency cepstral coefficients
(MFCCs) [17], sub-band and long-term SNR [18, 19], or fea-
tures used in the standard G.729B [20, 21]. Furthermore, a
recent work [22] presented a novel unsupervised learning ap-
proach called support-vector-regression-based maximum mar-
gin clustering which was also tested in a voice activity detection
scenario and showed comparable performance to supervised ap-
proach based on support vector machine method.
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Our work presented in this paper surveys the supervised
learning approaches to VAD and builds on upon the aforemen-
tioned related works with the following main contributions. Firstly,
to the best of our knowledge, we are the first to introduce a
method for input variable analysis based on partial mutual in-
formation algorithm in the context of voice activity detection.
This method systematically classifies features on those that should
be included and those that could be omitted from the input
set, which we find extremely important when extending input
spaces of supervised learning algorithms. Secondly, we ex-
tend the input space with distinct features under the hypoth-
esis (which is tested) that this will improve the performance
of VADs. While most of the features in the related works are
variants on the SNR estimation (a priori, a posteriori, predicted,
sub-band and long-term), with two exceptions—one which used
only MFCC [17] and other which is based on features from
G.729B [20], in the present paper we extended this feature space
by using information from the SNR estimation in the form of a
statistical-based likelihood ratio (LR) by modeling the distribu-
tion of the spectral envelope, along with several distinct features
like magnitudes of some of the DFT coefficients, spectral flux,
spectral centroid and bandwidth, power-normalized cepstral co-
efficients, MFCCs etc. Furthermore, for the classification task
we present a systematic quantiative evaluation of the follow-
ing three supervised learning algorithms: Boost, artificial neu-
ral networks (ANNs) and SVM, while all the related work pa-
pers on VAD utilize only SVM. The algorithms were tested and
compared under varying noise conditions, namely three types
of noises and three different SNRs, and showed similar per-
formance with a slight advantage in the direction of the Boost
classifier.

Although a detector can be considered as a binary classi-
fier, for clarity throughout the paper we use the term detector to
denote the statistical model-based detector based on the like-
lihood ratio, while the term classifier or supervised learning
based VAD denotes the SVM, Boost and ANN classifiers. The
rest of the paper is organized as follows. Section 2 presents the
statistical model-based VADs. In Section 3, the implemented
algorithms for noise spectrum estimation and a priori signal-to-
noise ratio are presented. Section 4 presents the utilized speech
corpus and evaluation metrics, while Section 5 presents the in-
put variable selection algorithm, the input variable set and the
resulting analysis. Section 6 presents the experimental evalua-
tion of the algorithms, and Section 7 concludes the paper.

2. Statistical Model-Based Detectors

These VADs rely on statistical modeling of the DFT coeffi-
cients. All the statistical model-based VADs assume a two hy-
potheses scenario. Since speech is degraded with uncorrelated
additive noise, the two hypotheses are as follows:

H0 : speech absent⇒ X = N
H1 : speech present⇒ X = N + S,

(1)

where the DFT coefficients of a K-point DFT of the noisy speech,
noise, and clean speech are denoted as X = [X0, X1, . . . , XK−1]T,

N = [N0,N1, . . . ,NK−1]T and S = [S 0, S 1, . . . , S K−1]T, respec-
tively.

The form of the probability density function (pdf) of X con-
ditioned on the hypotheses, i.e. p(X|H0) and p(X|H1), depends
on the distribution used to model each DFT coefficient. After
the pdfs p(X|H0) and p(X|H1) are determined, usually a likeli-
hood ratio on all the DFT coefficient indices k is calculated:

Λk =
p(Xk |H1)
p(Xk |H0)

, (2)

where Λk becomes a vector of length K. This information is
then used to calculate geometric mean which is then compared
to a certain threshold in order to reach a final decision in favor
of either the hypothesis H0 or H1:

log Λ =
1
K

K∑
k=1

log Λk

H1

≷
H0

η. (3)

2.1. Gaussian distribution statistical model

The VAD based on Gaussian distribution was first proposed
in [1], where the DFT coefficients are asymptotically indepen-
dent and zero-mean complex Gaussian random variables. When
both speech and noise are present, we have for each coefficient
a sum of independent Gaussian variables (speech plus noise),
thus resulting with a pdf of variance λx,k = λs,k + λn,k. Hence,
the conditional pdfs of Xk on hypotheses H0 and H1 are as fol-
lows:

p(Xk |H0) =
1

πλn,k
exp

(
−|Xk |2
λn,k

)
, (4)

p(Xk |H1) =
1

π(λn,k + λs,k)
exp

(
− |Xk |2
λn,k + λs,k

)
. (5)

Under the Gaussian distribution (GD) model, the LR is simply
calculated as the ratio of (5) and (4):

ΛGD
k =

p(Xk |H1)
p(Xk |H0)

=
1

1 + ξk
exp

(
γkξk

1 + ξk

)
, (6)

where ξk = λs,k/λn,k is the a priori SNR, and γk = |Xk |2/λn,k is
the a posteriori SNR. A more detailed derivation can be found
in [23], while the algorithms for estimation of these values are
presented in Section 3.

2.2. Rayleigh and Rice distribution statistical model

In the approach proposed in [24], derived from [25], the
DFT coefficients are still modelled as having a Gaussian distri-
bution, but instead of using their joint distribution, the distribu-
tion of the signal envelope is used. The envelope of a signal,

|Xk | =
√

X2
R,k + X2

I,k, is actually the euclidean norm of the real
and imaginary coefficients. Therefore, instead of looking at the
distribution of the coefficients, the distribution of the signal en-
velope is analysed.
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Under hypothesis H0 the signal is only noise, which means
that the DFT coefficients are both independent, zero-mean Gaus-
sian variables with variance λn,k/2 = E[|Nk |2]. Under that as-
sumption, the pdf of the euclidean distance of such DFT coeffi-
cients is a Rayleigh distribution:

p(Xk |H0) =
2|Xk |
λn,k

exp
(
−|Xk |2
λn,k

)
. (7)

Under hypothesis H1, the envelope is the euclidean norm of two
independent, non-zero-mean Gaussian variables. Such pdf is a
Rician:

p(Xk |H1) =
2|Xk |
λn,k

exp
(
− 1
λn,k

(
|Xk |2 + |Ak |2

)}
I0

{
2|Ak ||Xk |
λn,k

)

=
2|Xk |
λn,k

exp
{
−|Xk |2
λn,k

− ξk

}
I0

2
√
ξk
|Xk |2
λn,k

 ,
(8)

where Ak is the amplitude of the clean speech spectrum, ξk =

|Ak |2/λn,k is the a priori SNR and I0(·) is the modified Bessel
function of the first kind and order zero. In [24] this VAD
was implemented by calculating the a posteriori probability
p(H1|Xk) of voice activity from (7) and (8) via Bayes’ formula.
Since in this paper the a priori SNR estimation, presented in
Section 3, for all frequency bins is implemented, we propose the
LR instead of the a posteriori probability p(H1|Xk). Finally, we
derive the LR for Rayleigh and Rice distribution (RRD) model:

ΛRRD
k = exp {−ξk} I0

(
2
√
ξkγk

)
. (9)

In [23] we have extensively analyzed and compared the per-
formance of three statistical model-based VADs: the GD model
[1], the generalized Gaussian distribution model [5], and the
RRD model [24]. The models were compared in detection per-
formance and computational demand. On average, under three
different types and levels of noises, the RRD VAD showed the
best results in detection accuracy, and ranked second in com-
putational demand. This is the reason why we chose to work
further with the RRD VAD and why we try to enhance its per-
formance with a supervised learning approach by adding, next
to the LR, several other distinct features.

3. Noise Spectrum Estimation

We can see from Section 2 that the RRD VAD requires esti-
mation of the noise spectrum λn,k and the a priori SNR ξk. First
we shall address the estimation of λn,k and then the estimation
of ξk.

In most VADs the noise spectrum estimation is done in a
way to assume that in the first several frames only noise is
present and for that time λn,k is estimated by time averaging
the spectrum of the recorded signal. Then, the VAD itself is
used to discriminate between frames where speech is present
and where only noise is present. When only noise is detected,
λn,k is again estimated in a time-averaging fashion.

In this paper an algorithm proposed by [26] and [27] called
minima-controlled recursive averaging (MCRA) is used since it

performs well in varying noise situations and it allows estima-
tion from all frames, and not just the ones where no speech is
detected.

3.1. Minima-controlled recursive averaging
As stated earlier, a common technique for noise spectrum

estimation is to apply temporal recursive smoothing during the
frames when only noise is present. Now, we have the following
hypotheses:

H0 : λn,k(l + 1) = anλn,k(l) + (1 − an)|Xk(l)|2,
H1 : λn,k(l + 1) = λn,k(l),

(10)

where 0 < an < 1 is a smoothing parameter.
Let ps,k(l) = p(H1|Xk(l)) denote the conditional speech pres-

ence probability at time frame l. Hence, we can write (10) as
follows:

λn,k(l + 1) = λn,k(l)ps,k(l)

+
[
anλn,k(l) + (1 − an)|Xk(l)|2

]
(1 − ps,k(l))

= ãn,k(l)λn,k(l) + (1 − ãn,k(l))|Xk(l)|2,
(11)

where
ãn,k(l) = an + (1 − an)ps,k(l) (12)

is a time-varying smoothing parameter. We can see that the
noise spectrum is estimated by averaging past power spectral
values, using a smoothing parameter that is adjusted by the
speech presence probability ps,k(l). In order to determine ps,k(l),
speech absence is calculated by looking at the ratio of the lo-
cal energy of the noisy signal and its minimum within a certain
time frame. For details on the estimation of ps,k(l) please confer
[26].

3.2. Decision directed a priori SNR estimation
The decision directed (DD) estimation approach for the es-

timation of ξk, the a priori SNR, was proposed in [28]. Firstly,
the Wiener gain is introduced as the following ratio:

ζk =
ξk

ξk + 1
. (13)

Now, we can define the estimator for ξk:

ξk(l) = αaζ
2
k (l − 1)γk(l − 1) + (1 − αa) max{γk(l) − 1, 0}, (14)

where 0 < αa < 1 is a smoothing parameter.
The noise spectrum λn,k and the a priori SNR ξk are contin-

uously updated via the MCRA and DD methods, respectively,
and are afterwards used in the RRD VAD. An overview on ad-
vancements in speech enhancement can be found in [29].

4. Speech corpus and metrics for voice activity detection
evaluation

In order to analyze the supervised learning based VAD algo-
rithms and performance thereof, we used the NOIZEUS speech
corpus by [30]. Although the corpus was originally created
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for testing speech enhancement algorithms, we used it for the
following reasons: (i) the recordings are of high quality and
were made in a sound-proof booth, (ii) it offers eight differ-
ent types of noises from AURORA database by [31] which
corrupt the original recordings at four different SNR levels,
(iii) the recordings were made by six different speakers—three
male and three female, (iv) it uses the IEEE sentence database
which contains phonetically-balanced sentences with relatively
low word-context predictability, and (v) the corpus is available
to researchers free of charge. The percentage of the speech seg-
ments amounted to 61.28%, which is as twice as high as com-
pared to [1], and [4], but less than 5% higher than in the cases of
[5] and [8]. The recordings were sampled at the rate of 25 kHz
and were later downsampled to 8 kHz. The total length of all
the recordings was 80.04 s, which offered, with 50% overlap
and frame length of L = 256, in total 5000 frames for detection.
However, in order to test the performance and train the classi-
fier for different types of noises and noise levels, we have added
to the clean speech also versions corrupted with babble (SNR
15 dB, 10 dB, 5 dB), car (SNR 15 dB, 10 dB, 5 dB) and white
Gaussian noise (SNR 20 dB, 15 dB, 10 dB). In total, this gave
us 50000 frames for evaluation.

Usually, in order to test and train the algorithms, the speech
segments are hand-labeled. However, in the present work we
used signal energy calculated via Parseval’s theorem as the in-
dicator of speech presence, which enabled automatic frame la-
beling. We find this approach justifiable in the case of the
NOIZEUS corpus, since the clean recordings were made in
a sound-proof booth resulting with the speech-absent frames
having energy a thousand times lower than the weakest speech
frame.

The evaluation metrics we used are based on the standard
elements of the confusion matrix: true positive (TP)—voice
classified as voice, true negative (TN)—silence classified as si-
lence, false positive (FP)—silence classified as voice, false neg-
ative (FN)—voice classified as silence. We also used speech de-
tection rate (SDR)—percentage of speech frames classified as
speech, and false alarm rate (FAR)—percentage of noise frames
classified as speech. The former and latter are calculated as fol-
lows:

SDR =
TP

TP + FN
, FAR =

FP
FP + TN

. (15)

These two rates are actually used in order to draw a receiver
operating characteristics (ROC) curve. An ROC curve is a two-
dimensional depiction of classifier performance. Usually, they
are produced by graphing pairs of SDR and FAR values as a
function of changes in the threshold value. To compare dif-
ferent classifiers it is practical to reduce the information in the
ROC curve to a single scalar value. A common method is to
evaluate the area under an ROC curve (AUC). For an exam-
ple, since both the SDR and FAR take values in the range of
[0, . . . , 1], for a perfect classifier the AUC value would be 1,
since it is able to make a perfect SDR without any false alarms.
A completely random classifier would have AUC value of 0.5,
since the ROC curve would be a diagonal line in the SDR–FAR
space. This would be equivalent to predicting based on fair coin
tosses. More on the ROC curves and metrics for evaluation of

classifiers can be found in [32, 33].
Another balanced measure of classification performance with

respect to all elements is the Matthews correlation coefficient
(MCC) which we chose as additional metric for performance
comparison. It is calculated as follows [32]:

MCC =
TP × TN − FP × FN√

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
. (16)

The MCC is always between −1 and +1, where −1 indicates
total disagreement and +1 indicates total agreement. The MCC
is 0 for completely random predictions. If two variables are
independent, then their MCC is 0. The converse in general is
not true.

5. Input variable selection based on partial mutual infor-
mation

Before we start with classification, we need to choose input
variables, i.e. features, upon which the classifiers will make de-
cision and which, in effect, will be combined to form a strong
classifier. We already mentioned that LR is one of the features,
but we hypothesize that by adding other features we could im-
prove the clasiffication results.

5.1. Partial Mutual Information
The partial mutual information (PMI) based input variable

selection (IVS) algorithm used in [34, 35] overcomes two main
issues that limit the applicability of many IVS techniques. Those
are the underlying assumption of linearity and redundancy within
the available data. The way that PMI IVS works is that it first
selects the most informative input variable, then it searches for
the next most informative variable but by taking into account
information already received from the previously selected vari-
able. This process continues until an introduction of an ad-
ditional input variable increases the mean squared error of the
prediction, i.e. the square of the expected value minus the label,
or PMI drops below a certain threshold. Hereafter, we present
the mathematical background of the PMI IVS.

Assuming y is a classification outcome, i.e. signal frame
label, x is a currently considered input variable (feature), and z
is a set of previously selected variables, partial mutual informa-
tion in x about y given z is formulated as follows:

PMI =

∫∫
pu,v(u, v) ln

pu,v(u, v)
pu(u)pv(v)

dudv , (17)

where u = y−E[y|z], v = x−E[x|z], and E[ . ] is the expectation
operator.

In order to obtain probability density functions for PMI from
the data, we used kernel density estimators (KDEs). E.g., in or-
der to calculate E[x|z] we used the following KDE:

p̂(x, z) =
1
n

1(√
2πh

)d √|Σ|

n∑
i=1

exp−‖[x z]T − [xi zi]T ‖Σ
2h2 , (18)

where ‖[x z]T−[xi zi]T ‖Σ = ([x z] − [xi zi]) Σ−1
(
[x z]T − [xi zi]T

)
is the Mahalanobis distance, and h is the kernel bandwidth, for
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which we used the Gaussian reference bandwidth throughout
this paper:

h =

(
4

d + 2

) 1
d+4

n−
1

d+4 , (19)

where d is the dimension of the multivariate variable set, and n
is the sample size.

Note that for E[x|z] we need p̂(x|z). If we take

Σ =

[
Σxx Σxz

Σzx Σzz

]
, (20)

we get

p̂(x|z) =
1
n

1(√
2πh

)d √
|Σ̄|

n∑
i=1

exp−‖x
T − x̄i

T ‖Σ̄
2h2 , (21)

where Σ̄ = Σxx − ΣxzΣ
−1
zz Σzx and x̄i = xi + ΣxzΣ

−1
zz (z − zi).

Finally,

E[x|z] =

n∑
i=1

wi

[
xi + ΣxzΣ

−1
zz (z − zi)

]
, (22)

where each sample is weighted by its weighting factor intro-
duced in [34]:

wi =

exp
(
−‖z

T − zT
i ‖Σzz

2h2

)
n∑

j=1

exp

−‖zT − zT
j ‖Σzz

2h2


. (23)

The pseudocode of IVS based on PMI utilized in the present
paper is given in Algorithm 1.

5.2. Input variable set
In the ensuing paragraphs we present the features that form

the potential input variable set. Each of them was analyzed as
a standalone detector and as a candidate for the reduced input
vector by the PMI IVS.

Magnitude of the DFT coefficients. A K-point transform
was used to analyze the spectrum of the recorded frames. The
magnitude of the first 32 coefficients of the transform were used
as a feature for the classifier.

Zero-crossing rate. The Zero Crossing Rate (ZCR) of a sig-
nal is the rate of sign changes along the signal. It is defined as
follows:

fZCR =

L∑
i=2

Zi,

where Zi =

{
1, if sign {x(i)} − sign {x(i − 1)} , 0
0, otherwise.

(24)

Human voice consists of voiced and unvoiced sounds. Voiced
sounds have higher ZCR value than the unvoiced sounds do.
Therefore, it is a reasonable assumption that ZCR of either
voiced or unvoiced parts of speech will be different than the
ZCR of noise in the silent periods.

Algorithm 1: Input variable selection based on partial
mutual information.

Input: sets of considered variables X = {x1, x2, . . . } and
labels Y = {y1, y2, . . . }

Output: set of chosen input variables Z = {z1, z2, . . . }
Initialize Z ← ∅
Initialize uMS E ← ∞
while X , ∅ do

Construct an estimator E[y|z]
Calculate u← y − E[y|z]
if uMS E < mse(u) then

Remove previously added x from Z
exit

uMS E ← mse(u)
foreach x ∈ X do

Construct an estimator E[x|z]
Calculate v← x − E[x|z]
Determine the PMI I(v, u)

Determine x = xs (i.e. v) which maximizes I(v, u)
if I(v, u) < Imin then

exit
Add xs to Z

Spectral flux. Spectral flux (SF) measures how quickly the
spectrum of the signal is changing. It is calculated by com-
paring the power spectrum of the current frame with the power
spectrum of the previous frame.

fS F =

∣∣∣∣∣∣∣
K∑

k=1

(
|Xk(l)|2 − |Xk(l − 1)|2

)∣∣∣∣∣∣∣ (25)

Speech changes quickly between voiced and unvoiced parts,
thus resulting with high SF values.

Spectral rolloff. Spectral rolloff (SR) is defined as the a-
quantile of the total energy in |Xk |2. It is a frequency under
which a fraction of the total energy is found. If K is the length
of the signal DFT, then SR can be defined as:

fS R = max
y

y : a >
∑y

k=1 |Xk |2∑K
k=1 |Xk |2

 (26)

Spectral rolloff was calculated at six quantiles equally spaced
in [0, 1].

Mel-frequency cepstral coefficients. Mel-frequency analy-
sis is a technique inspired by human sound perception. The
human ear acts as a filter and concentrates only on specific
spectral components. The filters are non-uniformly spaced on
a frequency scale, and their density is higher in the low fre-
quency regions. The MFCCs are calculated in several steps:
(i) the magnitude spectrum |Xk | is filtered with a bank of non-
uniformly spaced overlapping triangular filters, (ii) the loga-
rithm is taken, and (iii) the MFCC are obtained by computing
the discrete cosine transform of the result. In [36] where authors
consider a voice conversion system, MFCC feature is identified
as a feature that does not consider any particular speech model,
i.e. feature that is useful for general voice activity detection,
without considering any speaker in particular.
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Power-normalized cepstral coefficients. In [37, 38] a feature
extraction algorithm called power-normalized cepstral coeffi-
cients (PNCC) was proposed, which instead of log nonlinearity
like MFCC uses power-law nonlinearity and a gammatone fil-
terbank. In [37] it was shown to outperform MFCC, among
others, in speech recognition accuracy. After adapting the algo-
rithm proposed in [37] to our scenario, we have used the first
thirteen PNCCs which were the result of a 20 element gamma-
tone prefiltering.

Spectral centroid. Spectral centroid (SC) is a statistic that
measures where most of the power of a speech segment is spec-
trally located. It is defined as follows:

fS C =

∑K
k=1 k|Xk |2∑K
k=1 |Xk |2

. (27)

Spectral bandwidth. Spectral bandwidth (SBW) describes
spreading of the spectral components with respect to the spec-
tral centroid:

fS BW =

√∑K
k=1(k − fS C)2|Xk |2∑K

k=1 |Xk |2
. (28)

Feature aggregation. In total the following features were
aggregated: 1 LR, 32 DFT magnitude coefficients, 1 ZCR, 1
SF, 6 SR quantiles, 15 mel-frequency cepstral coefficients, 13
power normalized cepstral coefficients, 1 SC and 1 SBW. Thus,
we had a feature vector of 71 for input variable analysis. Similar
approach was used in [39, 12] for music classification.

5.3. Individual feature performance and IVS results

Each of the afore presented features can be considered as
a detector in itself, whose performance might indicate the suit-
ability of being an element in the input vector. As an intuitive
preliminary analysis, we utilized the ROC curves, i.e. the re-
lated AUC score, of each feature evaluated on the whole data
set at once. Table 1 shows the AUC for all the features pre-
sented in the current section. We can see that the LR has the
highest score, followed by the first PNCC, SF, the first MFCC
coefficient, while the third and ninth PNCC have the lowest
score. Furthermore, ROC curves for five features with the high-
est AUC score are depicted in Fig. 1, while the values of three
features with the highest AUC score along with the label for
200 frames are depicted in Fig. 2.

Due to high memory requirements the analysis based on
partial mutual information was carried out on the set consist-
ing of the clean signal, and its versions corrupted with bab-
ble (SNR 10 dB), car (SNR 10 dB), and white Gaussian noise
(SNR 15 dB) separately. The analysis on each set was stopped
once the addition of another feature caused increase in the mean
squared error. Based on the results we kept those features that
were chosen in at least two sets: the LR, DFT indexes 7, 8, 9,
11, the 1st and 2nd SR, the 1st MFCC, SC, SBW, and 1st, 2nd

and 3rd PNCC. It is interesting to note that the PMI algorithm
chose the 3rd PNCC as a good feature, although it has by far the
lowest AUC score than many other features. However, the PMI
chooses features which bring additional information when all

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FAR

SD
R

LR
SF
ninth DFT coeff.
first MFCC
first PNCC coeff.

Figure 1: ROC curves for the five features with the highest AUC score.

0 50 100 150 200

0

2

4

6

frame

fe
at

ur
e

va
lu

e

label
LR
SF
first PNCC coeff.

Figure 2: Feature values for a random segment of 200 frames corrupted with
babble noise (15 dB SNR).

the information from other features is taken into account, mean-
ing that in certain scenarios the 3rd PNCC contributed to correct
classification. In total this amounts to 13 features forming a re-
duced vector of input variables, which is an 82% decrease in
the size of the feature vector.

Although from Fig. 1 we can see that the LR as a standalone
detector outperforms other features, we conjecture and shall test
(i) that a trained classifier based on LR and other features should
outperform a statistical model-based detector based on LR, and
(ii) that a detector with carefully chosen reduced input vector
should not significantly underperform the detector based on a
full feature vector. We shall test these hypotheses on 50000
learning examples and by meticulous analysis with ROC curves
and the AUC metric.
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Table 1: AUC score of all the features.

Feature AUC Feature AUC Feature AUC

1. LR 0.978 25. 31st DFT 0.708 49. 3rd DFT 0.632
2. 1st PNCC 0.936 26. 4thSR 0.708 50. 1stSR 0.624
3. SF 0.895 27. 22nd DFT 0.708 51. 12th MFCC 0.622
4. 1st MFCC 0.888 28. 32nd DFT 0.706 52. 4th DFT 0.619
5. 9th DFT 0.861 29. 23rd DFT 0.706 53. 4th MFCC 0.609
6. 15th DFT 0.815 30. 21st DFT 0.704 54. 14th MFCC 0.609
7. 8th DFT 0.810 31. 20th DFT 0.702 55. 4th PNCC 0.603
8. 6th MFCC 0.809 32. 19th DFT 0.702 56. 6th DFT 0.602
9. 16th DFT 0.805 33. 30th DFT 0.700 57. 9th MFCC 0.601
10. 14th DFT 0.793 34. 24th DFT 0.694 58. 7th PNCC 0.597
11. 10th DFT 0.786 35. 2nd MFCC 0.692 59. 3rd MFCC 0.586
12. 17th DFT 0.767 36. 5th MFCC 0.686 60. 8th MFCC 0.583
13. 13th DFT 0.765 37. 29th DFT 0.680 61. 13th MFCC 0.566
14. 12th DFT 0.751 38. 25th DFT 0.663 62. 10th PNCC 0.564
15. 11th DFT 0.747 39. 1st DFT 0.661 63. 11th PNCC 0.561
16. 7th MFCC 0.743 40. 28th DFT 0.660 64. 13th PNCC 0.554
17. 3rd SR 0.739 41. 2nd PNCC 0.658 65. 15th MFCC 0.548
18. ZCR 0.731 42. 6th PNCC 0.655 66. 5th PNCC 0.545
19. 18th DFT 0.726 43. 2nd DFT 0.655 67. 10th MFCC 0.541
20. 2nd SR 0.725 44. 7th DFT 0.652 68. 8th PNCC 0.519
21. SBW 0.722 45. 27th DFT 0.648 69. 12th PNCC 0.518
22. 5thSR 0.720 46. 11th MFCC 0.647 70. 3rd PNCC 0.511
23. 6thSR 0.719 47. 26th DFT 0.644 71. 9th PNCC 0.505
24. SC 0.713 48. 5th DFT 0.637

6. Quantitative evaluation of SVM, Boost, and ANN based
voice activity detectors

In the present paper we utilized and compared three super-
vised learning algorithms; SVM, Boost, and ANN, which were
to classify if a signal frame contains speech or not based on the
full and the reduced feature set generated by algorithm in Sec-
tion 5. The three have different approaches to learning and all
have their advantages, and we shall briefly introduce each in the
following paragraphs. But it is important to notice at this point
that the goal of the present paper is not to provide a detailed
tutorial in either of the classifiers, but to analyze and compare
the performance of the three for the specific purpose of voice
activity detection based on various features and not in general.
For training and testing the three learning algorithms we used
the OpenCV library [40].

Essentially, SVM [41, 42] is a learning algorithm that con-
structs a hyperplane or a set of hyperplanes which define bound-
aries for the data to be discriminated. The data, most often, is
not linearly separable and this problem is addressed by SVM
in a way that non-linearly maps the input vector with a kernel
function to a high-dimensional feature space. They can also be
used in regression tasks, but in the present paper we use them in
the context of a binary classifier. An introduction to the theory
behind SVM and some practical insights can be found in [43].
In the present paper we used C-support vector classification and
radial basis function RBF as the kernel function.

The main idea behind boosting algorithms is to use many

simple detectors which should have performance a bit better
than 50% at least (i.e. better than random guessing)—these are
called weak classifiers—and combine them to obtain highly ac-
curate classifier—usually called a strong classifier. In its orig-
inal form, Boost handles binary classification problems only,
although there are extensions to handle multi-class and even
multi-label classification problems [44]. In the present paper,
a variant of the Boost algorithm proposed in [45] called Real
Boost is used [46].

The ANNs are a product of the desire to imitate the work-
ings of the biological brain. They involve a network of sim-
ple processing elements (artificial neurons) which can exhibit
complex global behavior. One of the most important properties
of ANNs is the ability to approximate any continuous function
up to a given precision. They have been extensively used in
both classification and regression tasks and more on the ANNs
can be found in [47]. In the present paper we utilize a static
multilayer perceptron network (MLP) with a sigmoid activa-
tion function, a single hidden layer with 5 neurons, while the
network parameters are learned using the resilient propagation
(RPROP) algorithm [48].

6.1. Evaluation of the supervised learning VAD algorithms
In this section we analyze the performance of the classifiers.

The data was constructed by concatenating the clean signal with
its corrupted versions thus, with frame length of L = 256 sam-
ples, yielding 50000 examples for evaluation. For the full in-
put vector we had 71 features, while the reduced input vector
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consisted of 13 features. Prior to the learning process, all the
features were scaled in a way to have a zero mean value and
standard deviation of one.

The evaluation was performed by K-fold cross-validation.
Essentially, the original dataset was partitioned randomly into
K subsets of equal size. Of the K subsets, one was retained for
testing the classifier while the other K − 1 subsets were used
for training. The cross-validation process was repeated K times
thus yielding K results which were used for drawing the average
ROC curves. As discussed in [33], by drawing just an ROC
curve of different classifiers and seeing which one dominates
to assess the performance might be misleading, since we do
not have a measure of variance. Therefore, it is suggested to
generate results from several test subsets, by a cross-validation
or bootstrap method, and average these results in order to obtain
a measure of variance. The ROC curves can be either averaged
vertically by fixing FAR and averaging over SDR, or by the
threshold, where for each threshold value an SDR–FAR pair is
found and their values are averaged thus yielding both vertical
and horizontal variance. In the present paper we used 10-fold
cross-validation and threshold averaging for evaluation of the
VAD algorithms.

Firstly, we compared intra-classifier performance, i.e. per-
formance of each classifier working with either the full or the
reduced input vector. Henceforth, all the figures depicting ROC
curves have for each point a confidence interval of three stan-
dard deviations included, along with the AUC score and three
standard deviations thereof. These deviations indicate just how
consistent the classifier performance was with respect to dif-
ferent cross-validation sets. Figure 3 shows the averaged ROC
curves and their AUC score for the SVM, from which we can
see that the classifier with the reduced feature set did not signif-
icantly underperform compared to the classifier trained on the
full feature set. In Fig. 4 we can see a bit different result for
the Boost classifier. In this case the classifier showed practi-
cally equal performance both in the mean and standard devia-
tion when being trained on the full and the reduced input set.
Finally, Fig. 5 shows the averaged ROC curves and their AUC
score for the ANN. It performed slightly better in the mean and
standard deviation of the AUC score with the full input vector,
but overall exhibited larger deviations than any of the other two
classifiers. This means that it did not perform as consistently
over all the subsets.

To conclude the intra-classifier analysis, we can assert that
the results supported our second hypothesis from the Section 5:
neither of the classifiers significantly underperformed when be-
ing trained on the reduced input vector formed by a careful IVS.
Henceforth, we shall only include in the analysis the classifiers
trained on the reduced input vector.

For the inter-classifier performance we also included the
statistical model-based detector presented in Section 2.2 which
too was evaluated by K-fold cross-validation. Since it does not
require training it was simply tested on the same K subsets and
these results were averaged. Figure 6 shows ROC curves for
the three supervised learning classifiers and the RRD detector
based on LR, from which we can see that the supervised learn-
ing approach with several additional features can significantly
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Figure 3: Averaged ROC curves for the SVM classifier with the full and reduced
input vector.
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Figure 4: Averaged ROC curves for the Boost classifier with the full and re-
duced input vector.

increase the performance of a detector. Moreover, judging from
the AUC scores shown in Fig. 6 we can assert that the Boost
classifier slightly outperforms the other classifiers, since it has
the largest AUC mean value and the smallest AUC standard de-
viation. Furthermore, by inspecting Figures 3, 4, and 5 we can
also see that Boost overall exhibited smaller deviations in the
ROC curves, which further tips the balance in Boost’s favor.

During the K-fold cross-validation we also monitored the
performance of the trained classifiers for each subset by calcu-
lating the SDR, FAR, and MCC presented in Section 4. Since
all the classifiers were trained to output a value between −1,
for non-speech, and 1, for speech frames, we set the threshold
to zero, thus all the frames with score larger or equal to zero
were classified as containing speech, while the other were clas-
sified as non-speech frames. This essentially would correspond
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Table 2: Averaged statistical scores of the trained classifier performance.

SDR [%] FAR [%] ERR [%] MCC±3σMCC

SVM full 96.73 2.26 5.53 0.944 ± 0.0141

red 94.47 3.71 9.24 0.906 ± 0.0183

Boost full 95.79 3.35 7.56 0.923 ± 0.0132

red 95.10 3.75 8.65 0.912 ± 0.0150

ANN full 95.23 3.90 8.67 0.912 ± 0.0189

red 93.43 5.05 11.62 0.882 ± 0.0309
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Figure 5: Averaged ROC curves for the ANN classifier with the full and reduced
input vector.
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Figure 6: Averaged ROC curves for all the classifiers with the reduced input
vector and the detector based solely on the LR.

to only a single point in the ROC curve graph, but it is very
practical since it provides a tangible sense of performance for

a single threshold value. The average of these statistical scores
for the aforementioned 10 subsets is shown in Table 2, where
we also provide error rate (ERR = (100 - SDR) + FAR) since it
is often used in other works.

To conclude the inter-classifier performance, from the above
presented results we can see that the classifiers significantly
outperformed the statistical model-based detector, and that due
to having the highest AUC score with the smallest standard de-
viation, and exhibiting no significant deviations anywhere in
the ROC curve, the Boost algorithm had the advantage over the
other algorithms for this specific application of speech activity
detection based on various features. Therefore, we can assert
that the results supported our first hypothesis from Section 5
that a trained classifier based on LR and other features should
outperform a statistical model-based detector based on LR.

These experiments were designed so as to find a LR model
that will show the best results [23], which we would then extend
with features meticulously analyzed with PMI IVS and encom-
pass it all in a supervised learning framework which showed the
best and most consistent performance. Furthermore, the corpus
that we used is freely available to all researchers [30] which will
enable direct comparison of detection algorithms in the future.
Comparison of our results to works which utilized a supervised
learning approach [15–17, 20, 18, 19] is not straightforward due
to utilization of a different speech corpus, graphical result rep-
resentation (no score presented) or non-direct metric (word ac-
curacy rate in speech recognition). However, some do provide
ERR score for different noise levels and types which we will
use for crude comparison with our results. For an example,
in [15] the best ERR was 5.38 % and 13.47 % for vehicle and
office noise, respectively, while [16] reports 9.4 % and 20.9 %
for vehicle and babble noise, respectively. In [20] authors re-
port ERR from 7.83 % to 41.39 % for different test sequences.
The authors in [17] report a score named equal error rate for
which equality 1-SDR=FAR holds. For three different datasets
they report equal error rate of 8.0 %, 13.1 %, and 19.0 % for an
SVM trained on MFCC. Comparing these results with Table 2
we can see that our results do not deviate and are in the rank of
their performance. However, since different datasets were used
in these papers, a direct comparison is not possible.
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7. Conclusion

In the present paper, we have presented the theory behind
statistical model-based VADs and derived the LR for Rayleigh-
Rice distribution based VAD. Furthermore, we have introduced
in total 70 additional features which were combined with the
RRD based VAD to form an input vector for the supervised
learning classifiers. The input vector was extensively analyzed
by a partial mutual information algorithm in order to single out
the most informative features and by AUC score analysis to test
the capability of each feature to serve as a VAD . The results
yielded a 13 element reduced input vector. We have focused on
SVM, Boost and ANN classifiers, whose performances were
mutually compared both with the full and the reduced input
vector. The algorithms were tested on the NOIZEUS speech
corpus consisting of recordings made by six different speak-
ers and which were corrupted by three different types and lev-
els of noises. The performance evaluation was based on a 10-
fold cross-validation and compared on threshold averaged ROC
curves, AUC score and MCC. Firstly, the results showed that
the performance was not undermined by utilizing the vector
with the reduced number of features. Secondly, although the
statistical model-based VAD by itself is a much better detector
than any of the other utilized features, a combination of the lat-
ter and the former in the form of a trained classifier produced
a VAD with significantly better performance. Finally, inter-
classifier analysis showed similar performance of the three, with
a slight advantage in the direction of the Boost classifier, since
it had the highest AUC score and the smallest variability in the
threshold averaged ROC curves, indicating a consistent perfor-
mance over all the test subsets.

The presented approach consisting of aggregating various
features, performing input variable selection by a partial mu-
tual information algorithm whereat a reduced input vector is
created, and training a classifier for voice activity detection, is
quite generic. It can be used on any combination of features
and, indeed, is not limited just to voice activity detection. In
order to further increase the VAD performance or tailor it to
specific scenarios, a cascaded classifier architectures can be uti-
lized, for which the presented approach would be indivertible.
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